
The set points where \[f(x)=\dfrac{x}{1+|x|}\] is differentiable is
(a) \[(-\infty ,0)\cup (0,\infty )\]
(b) \[(-\infty ,1)\cup (-1,\infty )\]
(c) \[(-\infty ,\infty )\]
(d)\[(0,\infty )\]
Answer
621.3k+ views
Hint: Separate the modulus part. Then find out the left hand derivative and right hand derivative. And compare them.
Complete step-by-step answer:
The given function is \[f(x)=\dfrac{x}{1+|x|}.\]
Here we can observe a modulus function in the denominator, so we can rewrite this function as,
\[f(x)=\left\{ \begin{matrix}
\dfrac{x}{1+x},x\ge 0 \\
\dfrac{x}{1-x},x<0 \\
\end{matrix} \right.\]
Now we will check the continuity and differentiability at \[x=0\].
First of all let us check the continuity at \[x=0\].
We know for a function f(x) to be continuous at \[x=0\] its left hand limit (LHL) should be equal to right hand limit (RHL).
So, let us consider the LHL first.
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{1-x}\]
Applying the limits, we have
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{0}{1-0}=0\]
So, $LHL=0........(i)$
Now, we will find the RHL.
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{1+x}=\dfrac{0}{1+0}=0\]
Applying the limits, we have
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{0}{1+0}=0\]
So, $RHL=0........(ii)$
From equation (i) and (ii), we have
LHL = RHL
So, the given function f(x) is continuous at \[x=0\].
Now, we shall check the differentiability.
We know for a function to be differentiable at \[x=0\] its left hand derivative (LHD) should be equal to its right hand derivative (RHD).
First, we can find LHD.
\[{{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{d}{dx}\left( \dfrac{x}{1-x} \right)\]
For differentiating this function we will use the quotient rule, i.e., \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}(u)-u\dfrac{d}{dx}(v)}{{{v}^{2}}}\]
So the LHD becomes,
\[\begin{align}
& {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1-x)\dfrac{d}{dx}(x)-x\dfrac{d}{dx}(1-x)}{{{(1-x)}^{2}}} \\
& \Rightarrow {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1-x)(1)-x(-1)}{{{(1-x)}^{2}}} \\
& \Rightarrow {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1-x+x}{{{(1-x)}^{2}}} \\
& \Rightarrow {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{(1-x)}^{2}}} \\
\end{align}\]
Now, applying the limit, we have
\[{{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\dfrac{1}{{{(1-0)}^{2}}}=1\]
\[\therefore LHD=1.......(iii)\]
Now, we will find the RHD.
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{d}{dx}\left( \dfrac{x}{1+x} \right)\]
Again, applying the quotient rule, we have
\[\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1+x)\dfrac{d}{dx}(x)-x\dfrac{d}{dx}(1+x)}{{{(1+x)}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1+x)(1)-x(1)}{{{(1+x)}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1+x-x}{{{(1+x)}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{(1+x)}^{2}}} \\
\end{align}\]
Now, by applying the limits we get,
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\dfrac{1}{{{(1+0)}^{2}}}=1\]
\[\therefore RHD=1.......(iv)\]
So, from equation (iii) and (iv), we see that $LHD=RHD$ .
Hence, f(x) is differentiable at $x=0$.
Hence, we conclude that the given function is differentiable from \[+\infty \] to \[-\infty \].
Hence, the correct answer is option (c).
Answer is Option (c).
Note: For finding the left hand and right hand derivative we can use the formula,
$\begin{align}
& LHD=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(a-x)-f(a)}{-h} \\
& RHD=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(a+x)-f(a)}{h} \\
\end{align}$
Using these formulas also we will get the same result.
Complete step-by-step answer:
The given function is \[f(x)=\dfrac{x}{1+|x|}.\]
Here we can observe a modulus function in the denominator, so we can rewrite this function as,
\[f(x)=\left\{ \begin{matrix}
\dfrac{x}{1+x},x\ge 0 \\
\dfrac{x}{1-x},x<0 \\
\end{matrix} \right.\]
Now we will check the continuity and differentiability at \[x=0\].
First of all let us check the continuity at \[x=0\].
We know for a function f(x) to be continuous at \[x=0\] its left hand limit (LHL) should be equal to right hand limit (RHL).
So, let us consider the LHL first.
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{1-x}\]
Applying the limits, we have
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{0}{1-0}=0\]
So, $LHL=0........(i)$
Now, we will find the RHL.
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{1+x}=\dfrac{0}{1+0}=0\]
Applying the limits, we have
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{0}{1+0}=0\]
So, $RHL=0........(ii)$
From equation (i) and (ii), we have
LHL = RHL
So, the given function f(x) is continuous at \[x=0\].
Now, we shall check the differentiability.
We know for a function to be differentiable at \[x=0\] its left hand derivative (LHD) should be equal to its right hand derivative (RHD).
First, we can find LHD.
\[{{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{d}{dx}\left( \dfrac{x}{1-x} \right)\]
For differentiating this function we will use the quotient rule, i.e., \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}(u)-u\dfrac{d}{dx}(v)}{{{v}^{2}}}\]
So the LHD becomes,
\[\begin{align}
& {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1-x)\dfrac{d}{dx}(x)-x\dfrac{d}{dx}(1-x)}{{{(1-x)}^{2}}} \\
& \Rightarrow {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1-x)(1)-x(-1)}{{{(1-x)}^{2}}} \\
& \Rightarrow {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1-x+x}{{{(1-x)}^{2}}} \\
& \Rightarrow {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{(1-x)}^{2}}} \\
\end{align}\]
Now, applying the limit, we have
\[{{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\dfrac{1}{{{(1-0)}^{2}}}=1\]
\[\therefore LHD=1.......(iii)\]
Now, we will find the RHD.
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{d}{dx}\left( \dfrac{x}{1+x} \right)\]
Again, applying the quotient rule, we have
\[\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1+x)\dfrac{d}{dx}(x)-x\dfrac{d}{dx}(1+x)}{{{(1+x)}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1+x)(1)-x(1)}{{{(1+x)}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1+x-x}{{{(1+x)}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{(1+x)}^{2}}} \\
\end{align}\]
Now, by applying the limits we get,
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\dfrac{1}{{{(1+0)}^{2}}}=1\]
\[\therefore RHD=1.......(iv)\]
So, from equation (iii) and (iv), we see that $LHD=RHD$ .
Hence, f(x) is differentiable at $x=0$.
Hence, we conclude that the given function is differentiable from \[+\infty \] to \[-\infty \].
Hence, the correct answer is option (c).
Answer is Option (c).
Note: For finding the left hand and right hand derivative we can use the formula,
$\begin{align}
& LHD=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(a-x)-f(a)}{-h} \\
& RHD=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(a+x)-f(a)}{h} \\
\end{align}$
Using these formulas also we will get the same result.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

