The shadow of a tower standing on a level ground is found to be 60 metres longer
when the sun's altitude is \[{30^0}\] than when it is ${45^0}$. Find the height of the tower.
Answer
Verified
509.7k+ views
Hint:- Draw figure and then use trigonometry identity $\tan \theta = \dfrac{{Perpendicular}}{{Base}}$.
The above figure is drawn with respect to given conditions in question.
Let the height of the tower be AB $ = y$ metres.
As we are given that the difference in length of shadows DC (see in figure) is 60 metres.
As, we can see from the above figure that the length of shadow when altitude
of sun is ${45^0}$ \[(i.e{\text{ }}\angle {\text{ACB)}}\] be $x$ metres \[(i.e{\text{ }}BC)\].
So, length of the shadow when altitude of sun is ${30^0}$ \[(i.e{\text{ }}\angle {\text{ADB)}}\] be $\left( {x + 60} \right)$ metres \[(i.e{\text{ }}BD)\]
As we know that, $\tan \theta = \dfrac{{Perpendicular}}{{Base}}$.
So, as we can see from the above figure in \[\Delta ABC\] that, $\tan {45^0} = \dfrac{{AB}}{{CB}} = \dfrac{y}{x}$.
So, $x = y$\[(i.e{\text{ }}AB = BC)\] (1)
And in \[\Delta ADB\], $\tan {30^0} = \dfrac{{AB}}{{DB}} = \dfrac{{AB}}{{DC + CB}} = \dfrac{y}{{60 + x}}$.
Now, putting the value of $\tan {30^0}$ and $x$ from equation 1 to the above equation. We get,
$\dfrac{1}{{\sqrt 3 }} = \dfrac{y}{{60 + y}} \Rightarrow \left( {\sqrt 3 - 1} \right)y = 60 \Rightarrow y = \dfrac{{60}}{{\left( {\sqrt 3 - 1} \right)}} \approx 81.96$metres
Now, as we have defined above that height of the tower is y metres.
Hence, the height of the tower will be 82 metres.
Note: - Whenever we come up with these types of problems then first, we should draw the figure according to the given conditions in question then, we will use the trigonometric functions to get the height of the tower, which will be the easiest and efficient method.
The above figure is drawn with respect to given conditions in question.
Let the height of the tower be AB $ = y$ metres.
As we are given that the difference in length of shadows DC (see in figure) is 60 metres.
As, we can see from the above figure that the length of shadow when altitude
of sun is ${45^0}$ \[(i.e{\text{ }}\angle {\text{ACB)}}\] be $x$ metres \[(i.e{\text{ }}BC)\].
So, length of the shadow when altitude of sun is ${30^0}$ \[(i.e{\text{ }}\angle {\text{ADB)}}\] be $\left( {x + 60} \right)$ metres \[(i.e{\text{ }}BD)\]
As we know that, $\tan \theta = \dfrac{{Perpendicular}}{{Base}}$.
So, as we can see from the above figure in \[\Delta ABC\] that, $\tan {45^0} = \dfrac{{AB}}{{CB}} = \dfrac{y}{x}$.
So, $x = y$\[(i.e{\text{ }}AB = BC)\] (1)
And in \[\Delta ADB\], $\tan {30^0} = \dfrac{{AB}}{{DB}} = \dfrac{{AB}}{{DC + CB}} = \dfrac{y}{{60 + x}}$.
Now, putting the value of $\tan {30^0}$ and $x$ from equation 1 to the above equation. We get,
$\dfrac{1}{{\sqrt 3 }} = \dfrac{y}{{60 + y}} \Rightarrow \left( {\sqrt 3 - 1} \right)y = 60 \Rightarrow y = \dfrac{{60}}{{\left( {\sqrt 3 - 1} \right)}} \approx 81.96$metres
Now, as we have defined above that height of the tower is y metres.
Hence, the height of the tower will be 82 metres.
Note: - Whenever we come up with these types of problems then first, we should draw the figure according to the given conditions in question then, we will use the trigonometric functions to get the height of the tower, which will be the easiest and efficient method.
Recently Updated Pages
One difference between a Formal Letter and an informal class null english null
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
What is the specific heat capacity of ice water and class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE