Answer
Verified
498.6k+ views
Hint:- Draw figure and then use trigonometry identity $\tan \theta = \dfrac{{Perpendicular}}{{Base}}$.
The above figure is drawn with respect to given conditions in question.
Let the height of the tower be AB $ = y$ metres.
As we are given that the difference in length of shadows DC (see in figure) is 60 metres.
As, we can see from the above figure that the length of shadow when altitude
of sun is ${45^0}$ \[(i.e{\text{ }}\angle {\text{ACB)}}\] be $x$ metres \[(i.e{\text{ }}BC)\].
So, length of the shadow when altitude of sun is ${30^0}$ \[(i.e{\text{ }}\angle {\text{ADB)}}\] be $\left( {x + 60} \right)$ metres \[(i.e{\text{ }}BD)\]
As we know that, $\tan \theta = \dfrac{{Perpendicular}}{{Base}}$.
So, as we can see from the above figure in \[\Delta ABC\] that, $\tan {45^0} = \dfrac{{AB}}{{CB}} = \dfrac{y}{x}$.
So, $x = y$\[(i.e{\text{ }}AB = BC)\] (1)
And in \[\Delta ADB\], $\tan {30^0} = \dfrac{{AB}}{{DB}} = \dfrac{{AB}}{{DC + CB}} = \dfrac{y}{{60 + x}}$.
Now, putting the value of $\tan {30^0}$ and $x$ from equation 1 to the above equation. We get,
$\dfrac{1}{{\sqrt 3 }} = \dfrac{y}{{60 + y}} \Rightarrow \left( {\sqrt 3 - 1} \right)y = 60 \Rightarrow y = \dfrac{{60}}{{\left( {\sqrt 3 - 1} \right)}} \approx 81.96$metres
Now, as we have defined above that height of the tower is y metres.
Hence, the height of the tower will be 82 metres.
Note: - Whenever we come up with these types of problems then first, we should draw the figure according to the given conditions in question then, we will use the trigonometric functions to get the height of the tower, which will be the easiest and efficient method.
The above figure is drawn with respect to given conditions in question.
Let the height of the tower be AB $ = y$ metres.
As we are given that the difference in length of shadows DC (see in figure) is 60 metres.
As, we can see from the above figure that the length of shadow when altitude
of sun is ${45^0}$ \[(i.e{\text{ }}\angle {\text{ACB)}}\] be $x$ metres \[(i.e{\text{ }}BC)\].
So, length of the shadow when altitude of sun is ${30^0}$ \[(i.e{\text{ }}\angle {\text{ADB)}}\] be $\left( {x + 60} \right)$ metres \[(i.e{\text{ }}BD)\]
As we know that, $\tan \theta = \dfrac{{Perpendicular}}{{Base}}$.
So, as we can see from the above figure in \[\Delta ABC\] that, $\tan {45^0} = \dfrac{{AB}}{{CB}} = \dfrac{y}{x}$.
So, $x = y$\[(i.e{\text{ }}AB = BC)\] (1)
And in \[\Delta ADB\], $\tan {30^0} = \dfrac{{AB}}{{DB}} = \dfrac{{AB}}{{DC + CB}} = \dfrac{y}{{60 + x}}$.
Now, putting the value of $\tan {30^0}$ and $x$ from equation 1 to the above equation. We get,
$\dfrac{1}{{\sqrt 3 }} = \dfrac{y}{{60 + y}} \Rightarrow \left( {\sqrt 3 - 1} \right)y = 60 \Rightarrow y = \dfrac{{60}}{{\left( {\sqrt 3 - 1} \right)}} \approx 81.96$metres
Now, as we have defined above that height of the tower is y metres.
Hence, the height of the tower will be 82 metres.
Note: - Whenever we come up with these types of problems then first, we should draw the figure according to the given conditions in question then, we will use the trigonometric functions to get the height of the tower, which will be the easiest and efficient method.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE