Answer
Verified
449.7k+ views
Hint: In the figure, we have a mirror $MN$. A point source $S$ due to the reflection of the mirror at a distance. We have a screen placed at a distance $D$. We have to find the shape of the interference fringes formed on the fringes. Interference happens when two rays from a coherent source interfere with each other. In such a case we will get a pattern of alternate bright and dark fringes.
Complete step by step answer:
We have the setup of the mirror and the object given in the figure.
We know that we need two rays for the formation of an interference pattern.
Therefore, let us consider another point source as shown in the figure below.
Let ${S'}$ be the other point source due to the reflection of the mirror.
The two rays $S$ and ${S'}$ are coherent and can produce an interference pattern.
Let us consider that the two rays meet at a point $P$ on the screen,
We can write the distance $SP$ as,
$SP = \sqrt {{{(x - h)}^2} + {y^2}} $ (using hypotenuse theorem)
We can write the distance ${S'}P$ as,
${S'}P = \sqrt {{{(x + h)}^2} + {y^2}} $
Let us take $\Delta $to be the path difference at the point $P$
The path difference can be written as,
$\Delta = {S'}P - SP$
From this we can write,
$\Delta + SP = {S'}P$
Squaring on both sides, we get
${\left( {\Delta + SP} \right)^2} = {\left( {{S'}P} \right)^2}$
Substituting the values of $SP$and ${S'}P$ we get
\[{\left( {\Delta + \sqrt {{{(x - h)}^2} + {y^2}} } \right)^2} = {\left( {\sqrt {{{\left( {x + h} \right)}^2} + {y^2}} } \right)^2}\]
On solving we get
${\Delta ^2} + \left( {{x^2} + {h^2} - 2hx} \right) + {y^2} + 2\Delta \sqrt {{{(x - h)}^2} + {y^2}} = \left( {{x^2} + {h^2} + 2xh} \right) + {y^2}$
Cancelling the common terms and rearranging the equation we get,
${\Delta ^2} - 4hx = - 2\Delta \sqrt {{{\left( {x - h} \right)}^2} + {y^2}} $
Again squaring the equation,
${\left( {{\Delta ^2} - 4hx} \right)^2} = {\left( { - 2\Delta \sqrt {{{\left( {x - h} \right)}^2} + {y^2}} } \right)^2}$
Squaring we get
${\Delta ^4} + 16{h^2}{x^2} - 8hx{\Delta ^2} = 4{\Delta ^2}({x^2} + {h^2} - 2hx) + {y^2}$
Expanding the equation we get,
${\Delta ^4} + 16{h^2}{x^2} - 8hx{\Delta ^2} = 4{\Delta ^2}{x^2} + 4{\Delta ^2}{h^2} - 8hx{\Delta ^2} + {y^2}$
Eliminating the common terms and rearranging the equation we get,
$16{h^2}{x^2} - 4{\Delta ^2}{x^2} + {y^2} = 4{\Delta ^2}{h^2} - {\Delta ^4}$
Making the LHS in terms of ${x^2}$and ${y^2}$we get
$\left( {16{h^2} - 4{\Delta ^2}} \right){x^2} + {y^2} = 4{h^2}{\Delta ^2} - {\Delta ^4}$
This equation is of the form, ${x^2} + {y^2} = {r^2}$
This is the equation for circle,
Hence fringes will appear circular.
So, the correct answer is “Option A”.
Note:
Light waves are considered electromagnetic waves. When two light waves of the same frequency overlap with each other interference happens and we get a pattern on the screen. The effect of the resultant pattern will depend on the amplitude of waves as well as the phases of the two waves. The resultant wave of interference is explained by the principle of superposition.
Complete step by step answer:
We have the setup of the mirror and the object given in the figure.
We know that we need two rays for the formation of an interference pattern.
Therefore, let us consider another point source as shown in the figure below.
Let ${S'}$ be the other point source due to the reflection of the mirror.
The two rays $S$ and ${S'}$ are coherent and can produce an interference pattern.
Let us consider that the two rays meet at a point $P$ on the screen,
We can write the distance $SP$ as,
$SP = \sqrt {{{(x - h)}^2} + {y^2}} $ (using hypotenuse theorem)
We can write the distance ${S'}P$ as,
${S'}P = \sqrt {{{(x + h)}^2} + {y^2}} $
Let us take $\Delta $to be the path difference at the point $P$
The path difference can be written as,
$\Delta = {S'}P - SP$
From this we can write,
$\Delta + SP = {S'}P$
Squaring on both sides, we get
${\left( {\Delta + SP} \right)^2} = {\left( {{S'}P} \right)^2}$
Substituting the values of $SP$and ${S'}P$ we get
\[{\left( {\Delta + \sqrt {{{(x - h)}^2} + {y^2}} } \right)^2} = {\left( {\sqrt {{{\left( {x + h} \right)}^2} + {y^2}} } \right)^2}\]
On solving we get
${\Delta ^2} + \left( {{x^2} + {h^2} - 2hx} \right) + {y^2} + 2\Delta \sqrt {{{(x - h)}^2} + {y^2}} = \left( {{x^2} + {h^2} + 2xh} \right) + {y^2}$
Cancelling the common terms and rearranging the equation we get,
${\Delta ^2} - 4hx = - 2\Delta \sqrt {{{\left( {x - h} \right)}^2} + {y^2}} $
Again squaring the equation,
${\left( {{\Delta ^2} - 4hx} \right)^2} = {\left( { - 2\Delta \sqrt {{{\left( {x - h} \right)}^2} + {y^2}} } \right)^2}$
Squaring we get
${\Delta ^4} + 16{h^2}{x^2} - 8hx{\Delta ^2} = 4{\Delta ^2}({x^2} + {h^2} - 2hx) + {y^2}$
Expanding the equation we get,
${\Delta ^4} + 16{h^2}{x^2} - 8hx{\Delta ^2} = 4{\Delta ^2}{x^2} + 4{\Delta ^2}{h^2} - 8hx{\Delta ^2} + {y^2}$
Eliminating the common terms and rearranging the equation we get,
$16{h^2}{x^2} - 4{\Delta ^2}{x^2} + {y^2} = 4{\Delta ^2}{h^2} - {\Delta ^4}$
Making the LHS in terms of ${x^2}$and ${y^2}$we get
$\left( {16{h^2} - 4{\Delta ^2}} \right){x^2} + {y^2} = 4{h^2}{\Delta ^2} - {\Delta ^4}$
This equation is of the form, ${x^2} + {y^2} = {r^2}$
This is the equation for circle,
Hence fringes will appear circular.
So, the correct answer is “Option A”.
Note:
Light waves are considered electromagnetic waves. When two light waves of the same frequency overlap with each other interference happens and we get a pattern on the screen. The effect of the resultant pattern will depend on the amplitude of waves as well as the phases of the two waves. The resultant wave of interference is explained by the principle of superposition.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE