
The S.I. unit of electron mobility is
A. ${m^2}{s^2}{V^{ - 1}}$
B. ${m^2}{s^2}{V^{ - 1}}$
C. $m{s^{ - 1}}V$
D. ${m^2}{s^{ - 2}}V$
Answer
581.1k+ views
Hint: Electron mobility is defined as the ratio of velocity to the electric field. $\mu = \dfrac{{{v_E}}}{E}$ SI unit of velocity is $\dfrac{m}{s}$ and SI unit of electric field is $\dfrac{V}{m}$ then substituting these values in the mobility equation we get our required result.
Complete step by step answer:
Now from the question, we have
$\mu = \dfrac{{{v_E}}}{E}$, then $\mu = \dfrac{{\dfrac{m}{s}}}{{\dfrac{V}{m}}}$ = $\dfrac{{{m^2}}}{{Vs}}$
= ${m^2}{s^{ - 1}}{V^{ - 1}}$, which is the required answer.
Thus, option B is the correct answer.
Note:
Drift Velocity
Subatomic particles like electrons move in random directions all the time. When electrons are subjected to an electrical field they are moving randomly, but they slowly drift in one direction, within the direction of the electrical field applied. The net velocity at which these electrons drift is understood as drift velocity.
We can use the subsequent formula so as to calculate drift velocity:
I = nAvQ
Where,
I is that the current flowing through the conductor which is measured in amperes
n is that the number of electrons
A is that the area of the cross-section of the conductor which is measured in ${m^2}$
v is that the drift velocity of the electrons
Q is that the charge of an electron which is measured in Coulombs
Complete step by step answer:
Now from the question, we have
$\mu = \dfrac{{{v_E}}}{E}$, then $\mu = \dfrac{{\dfrac{m}{s}}}{{\dfrac{V}{m}}}$ = $\dfrac{{{m^2}}}{{Vs}}$
= ${m^2}{s^{ - 1}}{V^{ - 1}}$, which is the required answer.
Thus, option B is the correct answer.
Note:
Drift Velocity
Subatomic particles like electrons move in random directions all the time. When electrons are subjected to an electrical field they are moving randomly, but they slowly drift in one direction, within the direction of the electrical field applied. The net velocity at which these electrons drift is understood as drift velocity.
We can use the subsequent formula so as to calculate drift velocity:
I = nAvQ
Where,
I is that the current flowing through the conductor which is measured in amperes
n is that the number of electrons
A is that the area of the cross-section of the conductor which is measured in ${m^2}$
v is that the drift velocity of the electrons
Q is that the charge of an electron which is measured in Coulombs
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What is Environment class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

How many squares are there in a chess board A 1296 class 11 maths CBSE

Distinguish between verbal and nonverbal communica class 11 english CBSE

The equivalent weight of Mohrs salt FeSO4 NH42SO4 6H2O class 11 chemistry CBSE

