
The S.I. unit of electron mobility is
A. ${m^2}{s^2}{V^{ - 1}}$
B. ${m^2}{s^2}{V^{ - 1}}$
C. $m{s^{ - 1}}V$
D. ${m^2}{s^{ - 2}}V$
Answer
493.2k+ views
Hint: Electron mobility is defined as the ratio of velocity to the electric field. $\mu = \dfrac{{{v_E}}}{E}$ SI unit of velocity is $\dfrac{m}{s}$ and SI unit of electric field is $\dfrac{V}{m}$ then substituting these values in the mobility equation we get our required result.
Complete step by step answer:
Now from the question, we have
$\mu = \dfrac{{{v_E}}}{E}$, then $\mu = \dfrac{{\dfrac{m}{s}}}{{\dfrac{V}{m}}}$ = $\dfrac{{{m^2}}}{{Vs}}$
= ${m^2}{s^{ - 1}}{V^{ - 1}}$, which is the required answer.
Thus, option B is the correct answer.
Note:
Drift Velocity
Subatomic particles like electrons move in random directions all the time. When electrons are subjected to an electrical field they are moving randomly, but they slowly drift in one direction, within the direction of the electrical field applied. The net velocity at which these electrons drift is understood as drift velocity.
We can use the subsequent formula so as to calculate drift velocity:
I = nAvQ
Where,
I is that the current flowing through the conductor which is measured in amperes
n is that the number of electrons
A is that the area of the cross-section of the conductor which is measured in ${m^2}$
v is that the drift velocity of the electrons
Q is that the charge of an electron which is measured in Coulombs
Complete step by step answer:
Now from the question, we have
$\mu = \dfrac{{{v_E}}}{E}$, then $\mu = \dfrac{{\dfrac{m}{s}}}{{\dfrac{V}{m}}}$ = $\dfrac{{{m^2}}}{{Vs}}$
= ${m^2}{s^{ - 1}}{V^{ - 1}}$, which is the required answer.
Thus, option B is the correct answer.
Note:
Drift Velocity
Subatomic particles like electrons move in random directions all the time. When electrons are subjected to an electrical field they are moving randomly, but they slowly drift in one direction, within the direction of the electrical field applied. The net velocity at which these electrons drift is understood as drift velocity.
We can use the subsequent formula so as to calculate drift velocity:
I = nAvQ
Where,
I is that the current flowing through the conductor which is measured in amperes
n is that the number of electrons
A is that the area of the cross-section of the conductor which is measured in ${m^2}$
v is that the drift velocity of the electrons
Q is that the charge of an electron which is measured in Coulombs
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
