
The S.I unit of permittivity of free space \[({{\varepsilon }_{0}})\] is:
A. \[C{{N}^{-1}}-{{m}^{-1}}\]
B. \[N{{m}^{-2}}{{C}^{-2}}\]
C. \[{{C}^{2}}{{N}^{-2}}{{m}^{-2}}\]
D. \[{{C}^{2}}{{N}^{-1}}{{m}^{-2}}\]
Answer
606.9k+ views
Hint: Permittivity is the resistance to the electric field. Generally, permittivity of free space is represented by \[\text{Farad/meter}\]. Here the options are in the terms of charge, force and length. To find that unit, we can use Coulomb’s law. Coulomb’s law can be written as, \[\text{F=}\dfrac{{{q}_{1}}{{q}_{2}}}{4\pi {{\varepsilon }_{0}}{{r}^{2}}}\], where \[{{q}_{1}}\] and \[{{q}_{2}}\] are two charges and r is the distance between two charges.
Complete Step by Step Answer:
Permittivity is a property of a material that can tell about the resistance of a material against the formation of an electric field. It is defined as the amount of charge required for the generation of one unit of electric flux in a specific medium. It depends upon the property of the medium. Generally, a charge will yield more electric flux in a low permittivity medium than the high permittivity medium.
Permittivity of the vacuum or free space is the lowest possible permittivity. It is treated as a physical constant and it is known as an electric constant. It has a value of \[8.85\times {{10}^{-12}}\text{Farad/meter}\].
According to Coulomb’s law, the force between two charges can be written as,
\[\text{F=}\dfrac{{{q}_{1}}{{q}_{2}}}{4\pi {{\varepsilon }_{0}}{{r}^{2}}}\], where \[{{q}_{1}}\] and \[{{q}_{2}}\]are two charges and r is the distance between two charges.
We can alter this equation to find the electric constant or permittivity of free space.
\[{{\varepsilon }_{0}}\text{=}\dfrac{{{q}_{1}}{{q}_{2}}}{4\pi F{{r}^{2}}}\]
To find the SI unit of permittivity of free space, we can substitute all the SI units of given quantities of the above equation.
\[\Rightarrow \dfrac{C.C}{N.{{m}^{2}}}\]
\[\Rightarrow {{C}^{2}}{{N}^{-1}}{{m}^{-2}}\]
So, the correct option is D.
Additional Information:
According to electrostatics, this unit can be further modified and can be written as Farad per meter.
Capacitance of a capacitor can be written as,
\[C=\dfrac{A{{\varepsilon }_{0}}}{d}\], where A is the area of the plates of the capacitor and d is the distance between the capacitor.
\[{{\varepsilon }_{0}}=\dfrac{Cd}{A}\]
So, the unit of electrical permittivity of free space will be,
\[\Rightarrow \dfrac{\text{Farad}\times m}{{{m}^{2}}}\]
So \[\text{Farad/meter}\] can also be used as the unit of electrical permittivity of free space.
The mathematical expression of permittivity is,
\[\text{Permittivity = }\dfrac{\text{Electric displacement}}{\text{Electric field density}}\]
Note: Permittivity is actually the measurement of resistance to an electric field. Don’t confuse it with that name. It doesn’t mean the ability to permit. Relative permittivity is a ratio of permittivity of a medium to the permittivity of free space. Hence it doesn’t have units.
Complete Step by Step Answer:
Permittivity is a property of a material that can tell about the resistance of a material against the formation of an electric field. It is defined as the amount of charge required for the generation of one unit of electric flux in a specific medium. It depends upon the property of the medium. Generally, a charge will yield more electric flux in a low permittivity medium than the high permittivity medium.
Permittivity of the vacuum or free space is the lowest possible permittivity. It is treated as a physical constant and it is known as an electric constant. It has a value of \[8.85\times {{10}^{-12}}\text{Farad/meter}\].
According to Coulomb’s law, the force between two charges can be written as,
\[\text{F=}\dfrac{{{q}_{1}}{{q}_{2}}}{4\pi {{\varepsilon }_{0}}{{r}^{2}}}\], where \[{{q}_{1}}\] and \[{{q}_{2}}\]are two charges and r is the distance between two charges.
We can alter this equation to find the electric constant or permittivity of free space.
\[{{\varepsilon }_{0}}\text{=}\dfrac{{{q}_{1}}{{q}_{2}}}{4\pi F{{r}^{2}}}\]
To find the SI unit of permittivity of free space, we can substitute all the SI units of given quantities of the above equation.
\[\Rightarrow \dfrac{C.C}{N.{{m}^{2}}}\]
\[\Rightarrow {{C}^{2}}{{N}^{-1}}{{m}^{-2}}\]
So, the correct option is D.
Additional Information:
According to electrostatics, this unit can be further modified and can be written as Farad per meter.
Capacitance of a capacitor can be written as,
\[C=\dfrac{A{{\varepsilon }_{0}}}{d}\], where A is the area of the plates of the capacitor and d is the distance between the capacitor.
\[{{\varepsilon }_{0}}=\dfrac{Cd}{A}\]
So, the unit of electrical permittivity of free space will be,
\[\Rightarrow \dfrac{\text{Farad}\times m}{{{m}^{2}}}\]
So \[\text{Farad/meter}\] can also be used as the unit of electrical permittivity of free space.
The mathematical expression of permittivity is,
\[\text{Permittivity = }\dfrac{\text{Electric displacement}}{\text{Electric field density}}\]
Note: Permittivity is actually the measurement of resistance to an electric field. Don’t confuse it with that name. It doesn’t mean the ability to permit. Relative permittivity is a ratio of permittivity of a medium to the permittivity of free space. Hence it doesn’t have units.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

