Answer
Verified
394.5k+ views
Hint :We know that according to Boyle’s law, for a given mass of a gas, the pressure is inversely proportional to volume occupied by that gas at a constant temperature. From this information, a relationship between $ \log p $ and $ \log V $ can be easily established for the given conditions. Formula Used: $ {{p}_{1}}{{V}_{1}}={{p}_{2}}{{V}_{2}} $ .
Complete Step By Step Answer:
According to Boyle’s law:
$ p\propto 1/V $ , for constant number of moles, $ n $ at constant temperature, $ T $
We can say that, $ p=c/V $ , where $ c $ is a constant.
$ \Rightarrow pV=c $ (constant).
Taking logarithms of both sides, we get:
$ \log pV=\log c $ .
Applying the formula, $ \log mn=\log m+\log n $ :
$ \log p+\log V=\log c $ .
Rearranging the above equation:
$ \log p=-\log V+\log c $ .
Here, $ \log p $ and $ \log V $ are variables and $ \log c $ is a constant.
Comparing the above equation with $ y=mx+C $ , we get:
$ y=\log p $ , $ m=-1 $ , $ x=\log V $ and constant $ C=\log c $ .
Here, $ m $ is the slope between the graph of $ y $ and $ x $ .
Therefore, the slope of the graph between $ \log p $ and $ \log V $ at constant temperature for a given mass of a gas is equal to $ -1 $ .
The following slope graph is given as:
Hence, option (B) is the correct answer.
Note :
Remember that Boyle’s law holds good for an ideal gas. Gases are at high temperature and low pressures behave near to ideal gas. Here, we have assumed that the given gas behaves as an ideal gas. Therefore, the required slope can also be found out by using the ideal gas equation, $ pV=nRT $ .
Taking logarithms of both sides, we get:
$ \log pV=\log nRT $ .
Here, $ n $ , $ R $ and $ T $ are constant, thus:
$ \log p+\log V=\text{constant} $ .
Rearranging the above equation:
$ \log p=-\log V+\text{constant} $ .
Hence, we get the same value of slope, $ m=-1 $ .
Complete Step By Step Answer:
According to Boyle’s law:
$ p\propto 1/V $ , for constant number of moles, $ n $ at constant temperature, $ T $
We can say that, $ p=c/V $ , where $ c $ is a constant.
$ \Rightarrow pV=c $ (constant).
Taking logarithms of both sides, we get:
$ \log pV=\log c $ .
Applying the formula, $ \log mn=\log m+\log n $ :
$ \log p+\log V=\log c $ .
Rearranging the above equation:
$ \log p=-\log V+\log c $ .
Here, $ \log p $ and $ \log V $ are variables and $ \log c $ is a constant.
Comparing the above equation with $ y=mx+C $ , we get:
$ y=\log p $ , $ m=-1 $ , $ x=\log V $ and constant $ C=\log c $ .
Here, $ m $ is the slope between the graph of $ y $ and $ x $ .
Therefore, the slope of the graph between $ \log p $ and $ \log V $ at constant temperature for a given mass of a gas is equal to $ -1 $ .
The following slope graph is given as:
Hence, option (B) is the correct answer.
Note :
Remember that Boyle’s law holds good for an ideal gas. Gases are at high temperature and low pressures behave near to ideal gas. Here, we have assumed that the given gas behaves as an ideal gas. Therefore, the required slope can also be found out by using the ideal gas equation, $ pV=nRT $ .
Taking logarithms of both sides, we get:
$ \log pV=\log nRT $ .
Here, $ n $ , $ R $ and $ T $ are constant, thus:
$ \log p+\log V=\text{constant} $ .
Rearranging the above equation:
$ \log p=-\log V+\text{constant} $ .
Hence, we get the same value of slope, $ m=-1 $ .
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
What is BLO What is the full form of BLO class 8 social science CBSE