Answer
Verified
496.8k+ views
Hint – In this question we have to find the solution of the given equation, use trigonometric identities like $\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$ to simplify for the value of x, but keep in mind that the solution is asked to be found only for the interval of \[0 \leqslant x \leqslant 2\pi \].
Complete step-by-step answer:
Given equation is
$\sin x + 3\sin 2x + \sin 3x = \cos x + 3\cos 2x + \cos 3x$
$ \Rightarrow \sin x + \sin 3x + 3\sin 2x = \cos x + \cos 3x + 3\cos 2x$
We have to find out the solution of this equation in the interval\[0 \leqslant x \leqslant 2\pi \].
Now as we know
$
\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) \\
\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) \\
$
So, use this property in the above equation we have,
$ \Rightarrow \sin x + \sin 3x + 3\sin 2x = \cos x + \cos 3x + 3\cos 2x$
$ \Rightarrow 2\sin \left( {\dfrac{{x + 3x}}{2}} \right)\cos \left( {\dfrac{{x - 3x}}{2}} \right) + 3\sin 2x = 2\cos \left( {\dfrac{{x + 3x}}{2}} \right)\cos \left( {\dfrac{{x - 3x}}{2}} \right) + 3\cos 2x$
Now simplify the above equation we have,
$ \Rightarrow 2\sin 2x\cos x + 3\sin 2x = 2\cos 2x\cos x + 3\cos 2x$ $\left[ {\because \cos \left( { - \theta } \right) = \cos \theta } \right]$
Now take common the common terms we have,
$ \Rightarrow \sin 2x\left( {2\cos x + 3} \right) = \cos 2x\left( {2\cos x + 3} \right)$
$ \Rightarrow \left( {2\cos x + 3} \right)\left( {\sin 2x - \cos 2x} \right) = 0$………………. (1)
$ \Rightarrow 2\cos x + 3 = 0$
$ \Rightarrow \cos x = \dfrac{{ - 3}}{2}$ (Which is not possible as the value of cosine is always lie between -1 to 1)
Again from equation (1) we have,
$ \Rightarrow \left( {\sin 2x - \cos 2x} \right) = 0$
$ \Rightarrow \sin 2x = \cos 2x$
$ \Rightarrow \dfrac{{\sin 2x}}{{\cos 2x}} = 1$
$ \Rightarrow \tan 2x = 1 = \tan \left( {n\pi + \dfrac{\pi }{4}} \right)$ (General solution where n = 0, 1, 2, 3, …………………. )
So on comparing
$ \Rightarrow 2x = n\pi + \dfrac{\pi }{4}$
$ \Rightarrow x = n\dfrac{\pi }{2} + \dfrac{\pi }{8}$
Now, we have to find out the value of x in the interval$0 \leqslant x \leqslant 2\pi $.
For n = 0
$ \Rightarrow x = \dfrac{\pi }{8}$.
For n = 1
$ \Rightarrow x = \dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{5\pi }}{8}$
For n = 2
$ \Rightarrow x = 2\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{9\pi }}{8}$
For n = 3
$ \Rightarrow x = 3\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{13\pi }}{8}$
For n = 4
$ \Rightarrow x = 4\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{17\pi }}{8} > 2\pi $ (So this solution is not considered)
Hence the required solution is $x = \dfrac{\pi }{8},\dfrac{{5\pi }}{8},\dfrac{{9\pi }}{8},\dfrac{{13\pi }}{8}$
Hence option (b) is correct.
Note: Whenever we face such types of problems the key concept is firstly to reach to the value of x but application of various trigonometric and algebraic identities. As the trigonometric functions involved are mostly periodic in nature therefore the solution also varies in different intervals so we need to keep in mind about the interval in which the solution is being asked.
Complete step-by-step answer:
Given equation is
$\sin x + 3\sin 2x + \sin 3x = \cos x + 3\cos 2x + \cos 3x$
$ \Rightarrow \sin x + \sin 3x + 3\sin 2x = \cos x + \cos 3x + 3\cos 2x$
We have to find out the solution of this equation in the interval\[0 \leqslant x \leqslant 2\pi \].
Now as we know
$
\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) \\
\cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) \\
$
So, use this property in the above equation we have,
$ \Rightarrow \sin x + \sin 3x + 3\sin 2x = \cos x + \cos 3x + 3\cos 2x$
$ \Rightarrow 2\sin \left( {\dfrac{{x + 3x}}{2}} \right)\cos \left( {\dfrac{{x - 3x}}{2}} \right) + 3\sin 2x = 2\cos \left( {\dfrac{{x + 3x}}{2}} \right)\cos \left( {\dfrac{{x - 3x}}{2}} \right) + 3\cos 2x$
Now simplify the above equation we have,
$ \Rightarrow 2\sin 2x\cos x + 3\sin 2x = 2\cos 2x\cos x + 3\cos 2x$ $\left[ {\because \cos \left( { - \theta } \right) = \cos \theta } \right]$
Now take common the common terms we have,
$ \Rightarrow \sin 2x\left( {2\cos x + 3} \right) = \cos 2x\left( {2\cos x + 3} \right)$
$ \Rightarrow \left( {2\cos x + 3} \right)\left( {\sin 2x - \cos 2x} \right) = 0$………………. (1)
$ \Rightarrow 2\cos x + 3 = 0$
$ \Rightarrow \cos x = \dfrac{{ - 3}}{2}$ (Which is not possible as the value of cosine is always lie between -1 to 1)
Again from equation (1) we have,
$ \Rightarrow \left( {\sin 2x - \cos 2x} \right) = 0$
$ \Rightarrow \sin 2x = \cos 2x$
$ \Rightarrow \dfrac{{\sin 2x}}{{\cos 2x}} = 1$
$ \Rightarrow \tan 2x = 1 = \tan \left( {n\pi + \dfrac{\pi }{4}} \right)$ (General solution where n = 0, 1, 2, 3, …………………. )
So on comparing
$ \Rightarrow 2x = n\pi + \dfrac{\pi }{4}$
$ \Rightarrow x = n\dfrac{\pi }{2} + \dfrac{\pi }{8}$
Now, we have to find out the value of x in the interval$0 \leqslant x \leqslant 2\pi $.
For n = 0
$ \Rightarrow x = \dfrac{\pi }{8}$.
For n = 1
$ \Rightarrow x = \dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{5\pi }}{8}$
For n = 2
$ \Rightarrow x = 2\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{9\pi }}{8}$
For n = 3
$ \Rightarrow x = 3\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{13\pi }}{8}$
For n = 4
$ \Rightarrow x = 4\dfrac{\pi }{2} + \dfrac{\pi }{8} = \dfrac{{17\pi }}{8} > 2\pi $ (So this solution is not considered)
Hence the required solution is $x = \dfrac{\pi }{8},\dfrac{{5\pi }}{8},\dfrac{{9\pi }}{8},\dfrac{{13\pi }}{8}$
Hence option (b) is correct.
Note: Whenever we face such types of problems the key concept is firstly to reach to the value of x but application of various trigonometric and algebraic identities. As the trigonometric functions involved are mostly periodic in nature therefore the solution also varies in different intervals so we need to keep in mind about the interval in which the solution is being asked.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE