Answer
Verified
430.2k+ views
Hint: Here, we have to find the solution for the given system of equations. First, we will convert the system of equations into a linear equation of two variables by substitution. Then we will solve the linear equation by elimination method to find the values of the given variable. A linear equation is an equation of the highest order as 1 with two variables.
Complete Step by Step Solution:
We are given the system of equations \[\dfrac{{2x + 5y}}{{xy}} = 6\] and \[\dfrac{{4x - 5y}}{{xy}} + 3 = 0\]
Considering, the first equation, we have
\[\dfrac{{2x + 5y}}{{xy}} = 6\]
By cross-multiplying, we get
\[ \Rightarrow 2x + 5y = 6xy\]
Dividing by \[xy\]on both the sides, we get
\[ \Rightarrow \dfrac{{2x}}{{xy}} + \dfrac{{5y}}{{xy}} = \dfrac{{6xy}}{{xy}}\]
By cancelling the similar terms, we get
\[ \Rightarrow \dfrac{2}{y} + \dfrac{5}{x} = 6\] ………………………………………………………..\[\left( 1 \right)\]
Now, considering the second equation, we have
\[\dfrac{{4x - 5y}}{{xy}} + 3 = 0\]
By cross-multiplying, we get
\[ \Rightarrow \dfrac{{4x - 5y}}{{xy}} + 3 \times \dfrac{{xy}}{{xy}} = 0\]
By rewriting the equation, we get
\[ \Rightarrow 4x - 5y + 3xy = 0\]
\[ \Rightarrow 4x - 5y = - 3xy\]
Dividing by \[xy\] on both the sides, we get
\[ \Rightarrow \dfrac{{4x}}{{xy}} - \dfrac{{5y}}{{xy}} = \dfrac{{ - 3xy}}{{xy}}\]
By cancelling the similar terms, we get
\[ \Rightarrow \dfrac{4}{y} - \dfrac{5}{x} = - 3\]……………………………………………………………\[\left( 2 \right)\]
Now, Substituting \[\dfrac{1}{x} = a\] and \[\dfrac{1}{y} = b\] in equation \[\left( 1 \right)\] and \[\left( 2 \right)\], we get
\[2b + 5a = 6\]……………………………………………………………\[\left( 3 \right)\]
\[4b - 5a = - 3\] …………………………………………………………\[\left( 4 \right)\]
Now, we have to solve the equations \[\left( 3 \right)\]and \[\left( 4 \right)\], to find the value of \[a,b\]
By adding equations \[\left( 3 \right)\] and \[\left( 4 \right)\], we get
\[6b + 0a = 3\]
\[ \Rightarrow 6b = 3\]
Dividing both side by 6, we get
\[ \Rightarrow b = \dfrac{3}{6}\]
\[ \Rightarrow b = \dfrac{1}{2}\]
Substituting \[b = \dfrac{1}{2}\] in equation \[\left( 3 \right)\], we get
\[2\left( {\dfrac{1}{2}} \right) + 5a = 6\]
Multiplying the terms, we get
\[ \Rightarrow 1 + 5a = 6\]
Subtracting 1 from both the sides, we get
\[ \Rightarrow 5a = 6 - 1\]
\[ \Rightarrow 5a = 5\]
Dividing both side by 5, we get
\[ \Rightarrow a = \dfrac{5}{5}\]
\[ \Rightarrow a = 1\]
Now we will substitute the value of \[a\] and \[b\] in the equation \[x = \dfrac{1}{a}\] and \[y = \dfrac{1}{b}\]. Therefore, we get
When \[a = 1\] then
\[x = \dfrac{1}{1} = 1\]
When \[b = \dfrac{1}{2}\] then
\[y = \dfrac{1}{{\dfrac{1}{2}}} = 2\]
Thus, the solution is\[\left( {1,2} \right)\].
Therefore, the solution of the system of equations \[\dfrac{{2x + 5y}}{{xy}} = 6\] and \[\dfrac{{4x - 5y}}{{xy}} + 3 = 0\] is \[\left( {1,2} \right)\].
Thus, Option A is correct.
Note:
We know that the linear equation of two variables should have constant terms to solve the equation. If the constant term has variables, then the variable has to be removed to solve the equation. The variables can be removed by substitution. But we should remember that if the variables are substituted for some variable, then it has to be substituted again to find the solution for the given variables.
Complete Step by Step Solution:
We are given the system of equations \[\dfrac{{2x + 5y}}{{xy}} = 6\] and \[\dfrac{{4x - 5y}}{{xy}} + 3 = 0\]
Considering, the first equation, we have
\[\dfrac{{2x + 5y}}{{xy}} = 6\]
By cross-multiplying, we get
\[ \Rightarrow 2x + 5y = 6xy\]
Dividing by \[xy\]on both the sides, we get
\[ \Rightarrow \dfrac{{2x}}{{xy}} + \dfrac{{5y}}{{xy}} = \dfrac{{6xy}}{{xy}}\]
By cancelling the similar terms, we get
\[ \Rightarrow \dfrac{2}{y} + \dfrac{5}{x} = 6\] ………………………………………………………..\[\left( 1 \right)\]
Now, considering the second equation, we have
\[\dfrac{{4x - 5y}}{{xy}} + 3 = 0\]
By cross-multiplying, we get
\[ \Rightarrow \dfrac{{4x - 5y}}{{xy}} + 3 \times \dfrac{{xy}}{{xy}} = 0\]
By rewriting the equation, we get
\[ \Rightarrow 4x - 5y + 3xy = 0\]
\[ \Rightarrow 4x - 5y = - 3xy\]
Dividing by \[xy\] on both the sides, we get
\[ \Rightarrow \dfrac{{4x}}{{xy}} - \dfrac{{5y}}{{xy}} = \dfrac{{ - 3xy}}{{xy}}\]
By cancelling the similar terms, we get
\[ \Rightarrow \dfrac{4}{y} - \dfrac{5}{x} = - 3\]……………………………………………………………\[\left( 2 \right)\]
Now, Substituting \[\dfrac{1}{x} = a\] and \[\dfrac{1}{y} = b\] in equation \[\left( 1 \right)\] and \[\left( 2 \right)\], we get
\[2b + 5a = 6\]……………………………………………………………\[\left( 3 \right)\]
\[4b - 5a = - 3\] …………………………………………………………\[\left( 4 \right)\]
Now, we have to solve the equations \[\left( 3 \right)\]and \[\left( 4 \right)\], to find the value of \[a,b\]
By adding equations \[\left( 3 \right)\] and \[\left( 4 \right)\], we get
\[6b + 0a = 3\]
\[ \Rightarrow 6b = 3\]
Dividing both side by 6, we get
\[ \Rightarrow b = \dfrac{3}{6}\]
\[ \Rightarrow b = \dfrac{1}{2}\]
Substituting \[b = \dfrac{1}{2}\] in equation \[\left( 3 \right)\], we get
\[2\left( {\dfrac{1}{2}} \right) + 5a = 6\]
Multiplying the terms, we get
\[ \Rightarrow 1 + 5a = 6\]
Subtracting 1 from both the sides, we get
\[ \Rightarrow 5a = 6 - 1\]
\[ \Rightarrow 5a = 5\]
Dividing both side by 5, we get
\[ \Rightarrow a = \dfrac{5}{5}\]
\[ \Rightarrow a = 1\]
Now we will substitute the value of \[a\] and \[b\] in the equation \[x = \dfrac{1}{a}\] and \[y = \dfrac{1}{b}\]. Therefore, we get
When \[a = 1\] then
\[x = \dfrac{1}{1} = 1\]
When \[b = \dfrac{1}{2}\] then
\[y = \dfrac{1}{{\dfrac{1}{2}}} = 2\]
Thus, the solution is\[\left( {1,2} \right)\].
Therefore, the solution of the system of equations \[\dfrac{{2x + 5y}}{{xy}} = 6\] and \[\dfrac{{4x - 5y}}{{xy}} + 3 = 0\] is \[\left( {1,2} \right)\].
Thus, Option A is correct.
Note:
We know that the linear equation of two variables should have constant terms to solve the equation. If the constant term has variables, then the variable has to be removed to solve the equation. The variables can be removed by substitution. But we should remember that if the variables are substituted for some variable, then it has to be substituted again to find the solution for the given variables.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE