Answer
Verified
460.8k+ views
Hint: Nearest Integer functions are the functions that come after rounding it off to the nearest integer.
Solving a quadratic equation: \[a{x^2} + bx + c = 0\]by using middle term splitting or using discriminant method.
Complete step-by-step answer:
Let, \[x = y\], where y is an integer.
The given equation can be written as:
\[ \Rightarrow {y^2} + {(y + 1)^2} = 25\]
On simplifying above equation we get,
\[ \Rightarrow {y^2} + {y^2} + 1 + 2y = 25\]
\[ \Rightarrow 2{y^2} + 2y = 25 - 1\]
\[ \Rightarrow 2{y^2} + 2y - 24 = 0\]
\[ \Rightarrow {y^2} + y - 12 = 0\]
\[ \Rightarrow {y^2} + 4y - 3y - 12 = 0\]
\[ \Rightarrow y(y + 4) - 3(y + 4) = 0\]
Taking \[(y + 4)\] common we get,
\[ \Rightarrow (y + 4)(y - 3) = 0\]
\[ \Rightarrow y = - 4;y = 3\]
\[ \Rightarrow x = - 4;x = 3\]
If \[x = y + s\]; where y is an integer and \[0 < s < 1\].
The equation can be written as:
\[ \Rightarrow {(y + 1)^2} + {(y + 2)^2} = 25\]
On simplifying above equation, we get:
\[ \Rightarrow {y^2} + 1 + 2y + {y^2} + 4 + 4y = 25\]
\[ \Rightarrow 2{y^2} + 6y = 25 - 5\]
\[ \Rightarrow 2{y^2} + 6y = 20\]
\[ \Rightarrow 2{y^2} + 6y - 2 = 0\]
\[ \Rightarrow {y^2} + 3k - 10 = 0\]
\[ \Rightarrow {y^2} + 5k - 2k - 10 = 0\]
\[ \Rightarrow y(y + 5) - 2(y + 5) = 0\]
Taking common;
\[ \Rightarrow (y + 5)(y - 2) = 0\]
\[ \Rightarrow y = 2, - 5\]
\[x = 2 + s\]and \[x = - 5 + s\].
\[ \Rightarrow x = - 5 + s\] and
\[ \Rightarrow x \in \left( { - 5, - 4} \right]\]
\[ \Rightarrow x = 2 + s\] and \[x = 3\]
\[ \Rightarrow x \in \left( {2,3} \right]\]
Required solution set= \[\left( { - 5, - 4} \right]\bigcup {x \in \left( {2,3} \right]} \].
Option (B) is correct.
Note: Nearest Integer functions include rounding of seven different types of functions.
They all deal with the separation of integer or fractional parts from real and complex number: the floor functions , the nearest integer function (round), the ceiling function (least integer), integer part of the quotient etc
Solving a quadratic equation: \[a{x^2} + bx + c = 0\]by using middle term splitting or using discriminant method.
Complete step-by-step answer:
Let, \[x = y\], where y is an integer.
The given equation can be written as:
\[ \Rightarrow {y^2} + {(y + 1)^2} = 25\]
On simplifying above equation we get,
\[ \Rightarrow {y^2} + {y^2} + 1 + 2y = 25\]
\[ \Rightarrow 2{y^2} + 2y = 25 - 1\]
\[ \Rightarrow 2{y^2} + 2y - 24 = 0\]
\[ \Rightarrow {y^2} + y - 12 = 0\]
\[ \Rightarrow {y^2} + 4y - 3y - 12 = 0\]
\[ \Rightarrow y(y + 4) - 3(y + 4) = 0\]
Taking \[(y + 4)\] common we get,
\[ \Rightarrow (y + 4)(y - 3) = 0\]
\[ \Rightarrow y = - 4;y = 3\]
\[ \Rightarrow x = - 4;x = 3\]
If \[x = y + s\]; where y is an integer and \[0 < s < 1\].
The equation can be written as:
\[ \Rightarrow {(y + 1)^2} + {(y + 2)^2} = 25\]
On simplifying above equation, we get:
\[ \Rightarrow {y^2} + 1 + 2y + {y^2} + 4 + 4y = 25\]
\[ \Rightarrow 2{y^2} + 6y = 25 - 5\]
\[ \Rightarrow 2{y^2} + 6y = 20\]
\[ \Rightarrow 2{y^2} + 6y - 2 = 0\]
\[ \Rightarrow {y^2} + 3k - 10 = 0\]
\[ \Rightarrow {y^2} + 5k - 2k - 10 = 0\]
\[ \Rightarrow y(y + 5) - 2(y + 5) = 0\]
Taking common;
\[ \Rightarrow (y + 5)(y - 2) = 0\]
\[ \Rightarrow y = 2, - 5\]
\[x = 2 + s\]and \[x = - 5 + s\].
\[ \Rightarrow x = - 5 + s\] and
\[ \Rightarrow x \in \left( { - 5, - 4} \right]\]
\[ \Rightarrow x = 2 + s\] and \[x = 3\]
\[ \Rightarrow x \in \left( {2,3} \right]\]
Required solution set= \[\left( { - 5, - 4} \right]\bigcup {x \in \left( {2,3} \right]} \].
Option (B) is correct.
Note: Nearest Integer functions include rounding of seven different types of functions.
They all deal with the separation of integer or fractional parts from real and complex number: the floor functions , the nearest integer function (round), the ceiling function (least integer), integer part of the quotient etc
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE