
The solution to the differential equation; $({x^2} - {y^2})dx + 2xydy = 0$, represents which curve-
(A). Line
(B). Circle
(C). Parabola
(D). Ellipse
Answer
611.1k+ views
Hint- First, find out the equation of $\dfrac{{dy}}{{dx}}$, and then simplify it to find out which curve it represents.
Complete step-by-step answer:
We have been given the differential equation, $({x^2} - {y^2})dx + 2xydy = 0 - (1)$
Solving the equation to find $\dfrac{{dy}}{{dx}}$:
$
({x^2} - {y^2})dx + 2xydy = 0 \\
\Rightarrow 2xydy = - ({x^2} - {y^2})dx \\
\Rightarrow 2xydy = ({y^2} - {x^2})dx \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{({y^2} - {x^2})}}{{2xy}} - (2) \\
$
Now, to find the solution of the given differential equation,
let $y = vx$
Differentiating w.r.t. x, we get-
$
\dfrac{{dy}}{{dx}} = x\dfrac{{dv}}{{dx}} + v\dfrac{{dx}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = x\dfrac{{dv}}{{dx}} + v \\
$
Putting value of $\dfrac{{dy}}{{dx}}$ and $y = vx$ in equation (2), we get-
\[
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{({y^2} - {x^2})}}{{2xy}} \\
\Rightarrow x\dfrac{{dv}}{{dx}} + v = \dfrac{{{{(xv)}^2} - {x^2}}}{{2x(xv)}} \\
\Rightarrow x\dfrac{{dv}}{{dx}} = \dfrac{{{x^2}{v^2} - {x^2}}}{{2{x^2}v}} - v \\
\Rightarrow x\dfrac{{dv}}{{dx}} = \dfrac{{{x^2}{v^2} - {x^2} - 2{x^2}{v^2}}}{{2{x^2}v}} \\
\Rightarrow x\dfrac{{dv}}{{dx}} = \dfrac{{ - {x^2}{v^2} - {x^2}}}{{2{x^2}v}} \\
\Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{1}{x}\left( {\dfrac{{ - {x^2}({v^2} + 1)}}{{2{x^2}v}}} \right) \\
\Rightarrow \dfrac{{dv}}{{dx}} = - \dfrac{1}{x}\left( {\dfrac{{{v^2} + 1}}{{2v}}} \right) \\
\Rightarrow \dfrac{{2vdv}}{{{v^2} + 1}} = - \dfrac{{dx}}{x} \\
\]
Integrating both sides, we get
\[
\int {\dfrac{{2vdv}}{{{v^2} + 1}}} = - \int {\dfrac{{dx}}{x}} \\
\int {\dfrac{{2vdv}}{{{v^2} + 1}}} = - \log |x| + C - (2) \\
\]
Now, let us put $t = {v^2} + 1$
Differentiating w.r.t v, we get-
$
\dfrac{{d({v^2} + 1)}}{{dv}} = \dfrac{{dt}}{{dv}} \\
2v = \dfrac{{dt}}{{dv}} \\
\Rightarrow dv = \dfrac{{dt}}{{2v}} \\
$
Now, from equation (2),
$
\int {\left( {\dfrac{{2vdt}}{{t.2v}}} \right)} = - \log |x| + c \\
\int {\dfrac{{dt}}{t} = - \log |x| + c} \\
\Rightarrow \log |t| = - \log |x| + c \\
\because t = {v^2} + 1 \\
\therefore \log |{v^2} + 1| = - \log |x| + c \\
\Rightarrow \log |{v^2} + 1| + \log |x| = c \\
\Rightarrow \log |x({v^2} + 1)| = c \\
$
Now, put $v = \dfrac{y}{x}$, we get-
$
\log |\dfrac{{{y^2} + {x^2}}}{x}| = \log c \\
\Rightarrow {y^2} + {x^2} = cx \\
\Rightarrow {x^2} + {y^2} = cx \\
\Rightarrow {x^2} + {y^2} - cx = 0 \\
$
Hence, the solution to the differential equation represents a circle with centre at c.
So, the correct option is (B).
Note – Whenever such types of questions appear, always try to convert the given equation in the form of dy/dx, and then solve it by assuming y = vx. So that, while integrating it won’t be so difficult. Once, done with the integration, check the equation is of which curve.
Complete step-by-step answer:
We have been given the differential equation, $({x^2} - {y^2})dx + 2xydy = 0 - (1)$
Solving the equation to find $\dfrac{{dy}}{{dx}}$:
$
({x^2} - {y^2})dx + 2xydy = 0 \\
\Rightarrow 2xydy = - ({x^2} - {y^2})dx \\
\Rightarrow 2xydy = ({y^2} - {x^2})dx \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{({y^2} - {x^2})}}{{2xy}} - (2) \\
$
Now, to find the solution of the given differential equation,
let $y = vx$
Differentiating w.r.t. x, we get-
$
\dfrac{{dy}}{{dx}} = x\dfrac{{dv}}{{dx}} + v\dfrac{{dx}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = x\dfrac{{dv}}{{dx}} + v \\
$
Putting value of $\dfrac{{dy}}{{dx}}$ and $y = vx$ in equation (2), we get-
\[
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{({y^2} - {x^2})}}{{2xy}} \\
\Rightarrow x\dfrac{{dv}}{{dx}} + v = \dfrac{{{{(xv)}^2} - {x^2}}}{{2x(xv)}} \\
\Rightarrow x\dfrac{{dv}}{{dx}} = \dfrac{{{x^2}{v^2} - {x^2}}}{{2{x^2}v}} - v \\
\Rightarrow x\dfrac{{dv}}{{dx}} = \dfrac{{{x^2}{v^2} - {x^2} - 2{x^2}{v^2}}}{{2{x^2}v}} \\
\Rightarrow x\dfrac{{dv}}{{dx}} = \dfrac{{ - {x^2}{v^2} - {x^2}}}{{2{x^2}v}} \\
\Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{1}{x}\left( {\dfrac{{ - {x^2}({v^2} + 1)}}{{2{x^2}v}}} \right) \\
\Rightarrow \dfrac{{dv}}{{dx}} = - \dfrac{1}{x}\left( {\dfrac{{{v^2} + 1}}{{2v}}} \right) \\
\Rightarrow \dfrac{{2vdv}}{{{v^2} + 1}} = - \dfrac{{dx}}{x} \\
\]
Integrating both sides, we get
\[
\int {\dfrac{{2vdv}}{{{v^2} + 1}}} = - \int {\dfrac{{dx}}{x}} \\
\int {\dfrac{{2vdv}}{{{v^2} + 1}}} = - \log |x| + C - (2) \\
\]
Now, let us put $t = {v^2} + 1$
Differentiating w.r.t v, we get-
$
\dfrac{{d({v^2} + 1)}}{{dv}} = \dfrac{{dt}}{{dv}} \\
2v = \dfrac{{dt}}{{dv}} \\
\Rightarrow dv = \dfrac{{dt}}{{2v}} \\
$
Now, from equation (2),
$
\int {\left( {\dfrac{{2vdt}}{{t.2v}}} \right)} = - \log |x| + c \\
\int {\dfrac{{dt}}{t} = - \log |x| + c} \\
\Rightarrow \log |t| = - \log |x| + c \\
\because t = {v^2} + 1 \\
\therefore \log |{v^2} + 1| = - \log |x| + c \\
\Rightarrow \log |{v^2} + 1| + \log |x| = c \\
\Rightarrow \log |x({v^2} + 1)| = c \\
$
Now, put $v = \dfrac{y}{x}$, we get-
$
\log |\dfrac{{{y^2} + {x^2}}}{x}| = \log c \\
\Rightarrow {y^2} + {x^2} = cx \\
\Rightarrow {x^2} + {y^2} = cx \\
\Rightarrow {x^2} + {y^2} - cx = 0 \\
$
Hence, the solution to the differential equation represents a circle with centre at c.
So, the correct option is (B).
Note – Whenever such types of questions appear, always try to convert the given equation in the form of dy/dx, and then solve it by assuming y = vx. So that, while integrating it won’t be so difficult. Once, done with the integration, check the equation is of which curve.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

