Answer
Verified
397.2k+ views
Hint :We know that the mass of a molecule of a substance is measured in molecular weight which is dependent on $ 12 $ as atomic weight of $ carbon-12 $ in practice. It’s determined by adding the atomic weights of the atoms that make up a substance molecular formula.
Complete Step By Step Answer:
As we know, the symbol $ R $ stands for the molar gas constant (also known as the gas constant, universal gas constant or ideal gas constant.) it’s the major equivalent of the Boltzmann constant. But in terms of energy per temperature increment per mole, i.e. the pressure-volume product, rather than energy per temperature increment per atom.
The values given here are the specific heat of air at constant volume $ {{C}_{v}}=0.718kJk{{g}^{-1}}{{k}^{-1}} $
Also the specific heat of air at constant pressure: $ {{C}_{P}}=0.718kJk{{g}^{-1}}{{k}^{-1}} $
Universal gas constant $ R=8.314kJkmo{{l}^{-1}}{{k}^{1}} $
Also, we can say that
$ R=\dfrac{8.314}{M}KJK{{g}^{-1}}{{K}^{-1}}(\because n=\dfrac{x}{M}) $
Here, we know that, $ {{C}_{P}}-{{C}_{V}}=R $
$ 1.005-0.718=\dfrac{8.314}{M} $
$ M=\dfrac{8.314}{0.287}=28.97 $
Hence, the correct answer is option A i.e. $ 28.97 $ .
Note :
Remember that the amount of heat per unit mass needed to increase the temperature by one degree Celsius is known as specific heat. The relationship between heat and temperature change is commonly expressed as follows, where c is the real heat. The equation for finding the molecular weight when specific heat at constant pressure, specific heat at volume and $ R $ is as follows:
$ M=\dfrac{R}{{{C}_{p}}-{{C}_{V}}} $
Complete Step By Step Answer:
As we know, the symbol $ R $ stands for the molar gas constant (also known as the gas constant, universal gas constant or ideal gas constant.) it’s the major equivalent of the Boltzmann constant. But in terms of energy per temperature increment per mole, i.e. the pressure-volume product, rather than energy per temperature increment per atom.
The values given here are the specific heat of air at constant volume $ {{C}_{v}}=0.718kJk{{g}^{-1}}{{k}^{-1}} $
Also the specific heat of air at constant pressure: $ {{C}_{P}}=0.718kJk{{g}^{-1}}{{k}^{-1}} $
Universal gas constant $ R=8.314kJkmo{{l}^{-1}}{{k}^{1}} $
Also, we can say that
$ R=\dfrac{8.314}{M}KJK{{g}^{-1}}{{K}^{-1}}(\because n=\dfrac{x}{M}) $
Here, we know that, $ {{C}_{P}}-{{C}_{V}}=R $
$ 1.005-0.718=\dfrac{8.314}{M} $
$ M=\dfrac{8.314}{0.287}=28.97 $
Hence, the correct answer is option A i.e. $ 28.97 $ .
Note :
Remember that the amount of heat per unit mass needed to increase the temperature by one degree Celsius is known as specific heat. The relationship between heat and temperature change is commonly expressed as follows, where c is the real heat. The equation for finding the molecular weight when specific heat at constant pressure, specific heat at volume and $ R $ is as follows:
$ M=\dfrac{R}{{{C}_{p}}-{{C}_{V}}} $
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 9 Social Science: Engaging Questions & Answers for Success
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Trending doubts
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
How many squares are there in a chess board A 1296 class 11 maths CBSE
What are ekaboron ekaaluminium and ekasilicon class 11 chemistry CBSE