Answer
Verified
499.2k+ views
Hint: Let us understand the concept of upstream and downstream first, if we consider a boat to be moving in the direction of the water flow then we call it downstream and when the boat is moving opposite to the direction of flow of water then it is upstream.
We have been given with the time that is taken by the boat in downstream and to calculate the speed of the stream
Now, we have been given the speed of the boat in still water is 15km/hr.
Let us assume the speed of the stream to be x km/hr.
When the boat is moving upstream the speed will be the speed of boat, minus the speed of stream,
Therefore, Speed of boat upstream = 15-x
Similarly, the speed of boat downstream will be = 15+x
We have the distance and the speed for upstream, so we can find the value of time,
Therefore,
Time taken for upstream, ${T_1} = \dfrac{{30}}{{15 - x}}$
Similarly.
Time taken for downstream, ${T_2} = \dfrac{{30}}{{15 + x}}$
But, in the question we have been provided with the value of ${T_1} + {T_2}$ as 4 hours 30 minutes,
Therefore on converting it into fractions we get,
${T_1} + {T_2} = \dfrac{9}{2}$
We will equate the value of ${T_1}$ and${T_2}$,
$ \Rightarrow \dfrac{{30}}{{15 - x}} + \dfrac{{30}}{{15 + x}} = \dfrac{9}{2}$
$ \Rightarrow 30\left( {\dfrac{1}{{15 - x}} + \dfrac{1}{{15 + x}}} \right) = \dfrac{9}{2}$
$ \Rightarrow 30\left( {\dfrac{{15 + x \div 15 - x}}{{\left( {15 - x} \right)\left( {15 + x} \right)}}} \right) = \dfrac{9}{2}$
$ \Rightarrow \dfrac{{30 \times 30}}{{225 - {x^2}}} = \dfrac{9}{2}$
$ \Rightarrow \dfrac{{100}}{{225 - {x^2}}} = \dfrac{9}{2}$
$ \Rightarrow 225 - {x^2} = 200$
$ \Rightarrow {x^2} = 25$
$ \Rightarrow x = 5$Km/hr (As x cannot be negative)
Speed of the stream is 5km/hr
Note: Whenever a boat is in downstream, it takes less effort and time as the boat is moving in the direction of the water but in case of upstream the boat is moving in the opposite direction so takes extra effort and time.
We have been given with the time that is taken by the boat in downstream and to calculate the speed of the stream
Now, we have been given the speed of the boat in still water is 15km/hr.
Let us assume the speed of the stream to be x km/hr.
When the boat is moving upstream the speed will be the speed of boat, minus the speed of stream,
Therefore, Speed of boat upstream = 15-x
Similarly, the speed of boat downstream will be = 15+x
We have the distance and the speed for upstream, so we can find the value of time,
Therefore,
Time taken for upstream, ${T_1} = \dfrac{{30}}{{15 - x}}$
Similarly.
Time taken for downstream, ${T_2} = \dfrac{{30}}{{15 + x}}$
But, in the question we have been provided with the value of ${T_1} + {T_2}$ as 4 hours 30 minutes,
Therefore on converting it into fractions we get,
${T_1} + {T_2} = \dfrac{9}{2}$
We will equate the value of ${T_1}$ and${T_2}$,
$ \Rightarrow \dfrac{{30}}{{15 - x}} + \dfrac{{30}}{{15 + x}} = \dfrac{9}{2}$
$ \Rightarrow 30\left( {\dfrac{1}{{15 - x}} + \dfrac{1}{{15 + x}}} \right) = \dfrac{9}{2}$
$ \Rightarrow 30\left( {\dfrac{{15 + x \div 15 - x}}{{\left( {15 - x} \right)\left( {15 + x} \right)}}} \right) = \dfrac{9}{2}$
$ \Rightarrow \dfrac{{30 \times 30}}{{225 - {x^2}}} = \dfrac{9}{2}$
$ \Rightarrow \dfrac{{100}}{{225 - {x^2}}} = \dfrac{9}{2}$
$ \Rightarrow 225 - {x^2} = 200$
$ \Rightarrow {x^2} = 25$
$ \Rightarrow x = 5$Km/hr (As x cannot be negative)
Speed of the stream is 5km/hr
Note: Whenever a boat is in downstream, it takes less effort and time as the boat is moving in the direction of the water but in case of upstream the boat is moving in the opposite direction so takes extra effort and time.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE