Answer
Verified
470.4k+ views
Hint: We will use the definition of prime numbers to prove this question. Once we state the definition of what prime numbers are, we will generalise it for the square of prime numbers. Then, we will see how many factors the square of prime numbers contains so as to know if we can include it in the category of prime numbers or not .
Complete step-by-step answer:
We need to check the given statement if true or not.
The statement is: The square of a prime number is prime.
Let us recall the definition of prime numbers. According to the definition, a prime number is a number which is only divisible by 1 and the number itself. Prime numbers are not divisible by any other number except those two (1 and itself).
Now, considering the square of the prime numbers, let us say a number m is a prime number. Therefore, its square will be $m^2$ .
Let us suppose $m^2$ is a prime number.
For $m^2$ to be a prime number, according to definition, it must contain only 2 factors i. e., 1 and $m^2$ .
But $m^2$ can also be written as mxm which makes m a factor of $m^2$ as well.
So, we get 3 factors of $m^2$ in total i.e., 1, m and $m^2$.
Hence, our assumption is wrong that the square of a prime number is also a prime number.
Therefore, we can say, by contradiction, that $m^2$ is not a prime number.
Option(B) is correct.
Note: In such questions where we are given a statement to justify whether true or false, we should first prove it by any method i.e., either by assumption or direct substitution to check if the given statement holds for every value or not.
For example take the number as 3 square will be 9 . Here 3 is a prime number but 9 is not a prime number.
Complete step-by-step answer:
We need to check the given statement if true or not.
The statement is: The square of a prime number is prime.
Let us recall the definition of prime numbers. According to the definition, a prime number is a number which is only divisible by 1 and the number itself. Prime numbers are not divisible by any other number except those two (1 and itself).
Now, considering the square of the prime numbers, let us say a number m is a prime number. Therefore, its square will be $m^2$ .
Let us suppose $m^2$ is a prime number.
For $m^2$ to be a prime number, according to definition, it must contain only 2 factors i. e., 1 and $m^2$ .
But $m^2$ can also be written as mxm which makes m a factor of $m^2$ as well.
So, we get 3 factors of $m^2$ in total i.e., 1, m and $m^2$.
Hence, our assumption is wrong that the square of a prime number is also a prime number.
Therefore, we can say, by contradiction, that $m^2$ is not a prime number.
Option(B) is correct.
Note: In such questions where we are given a statement to justify whether true or false, we should first prove it by any method i.e., either by assumption or direct substitution to check if the given statement holds for every value or not.
For example take the number as 3 square will be 9 . Here 3 is a prime number but 9 is not a prime number.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE