
The square of a prime number is prime.
A.True
B.False
C.Data insufficient
D.None
Answer
507k+ views
Hint: We will use the definition of prime numbers to prove this question. Once we state the definition of what prime numbers are, we will generalise it for the square of prime numbers. Then, we will see how many factors the square of prime numbers contains so as to know if we can include it in the category of prime numbers or not .
Complete step-by-step answer:
We need to check the given statement if true or not.
The statement is: The square of a prime number is prime.
Let us recall the definition of prime numbers. According to the definition, a prime number is a number which is only divisible by 1 and the number itself. Prime numbers are not divisible by any other number except those two (1 and itself).
Now, considering the square of the prime numbers, let us say a number m is a prime number. Therefore, its square will be .
Let us suppose is a prime number.
For to be a prime number, according to definition, it must contain only 2 factors i. e., 1 and .
But can also be written as mxm which makes m a factor of as well.
So, we get 3 factors of in total i.e., 1, m and .
Hence, our assumption is wrong that the square of a prime number is also a prime number.
Therefore, we can say, by contradiction, that is not a prime number.
Option(B) is correct.
Note: In such questions where we are given a statement to justify whether true or false, we should first prove it by any method i.e., either by assumption or direct substitution to check if the given statement holds for every value or not.
For example take the number as 3 square will be 9 . Here 3 is a prime number but 9 is not a prime number.
Complete step-by-step answer:
We need to check the given statement if true or not.
The statement is: The square of a prime number is prime.
Let us recall the definition of prime numbers. According to the definition, a prime number is a number which is only divisible by 1 and the number itself. Prime numbers are not divisible by any other number except those two (1 and itself).
Now, considering the square of the prime numbers, let us say a number m is a prime number. Therefore, its square will be
Let us suppose
For
But
So, we get 3 factors of
Hence, our assumption is wrong that the square of a prime number is also a prime number.
Therefore, we can say, by contradiction, that
Option(B) is correct.
Note: In such questions where we are given a statement to justify whether true or false, we should first prove it by any method i.e., either by assumption or direct substitution to check if the given statement holds for every value or not.
For example take the number as 3 square will be 9 . Here 3 is a prime number but 9 is not a prime number.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Questions & Answers - Ask your doubts

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Trending doubts
What is the full form of AD a After death b Anno domini class 6 social science CBSE

How many millions make a billion class 6 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Four bells toll together at 900am They toll after 7811 class 6 maths CBSE

Name the countries which are larger than India class 6 social science CBSE

How many lightyears away is the sun from the earth class 6 social science CBSE
