Answer
Verified
498.6k+ views
Hint: Try to simplify the expression that is given in the question. Make it as simplified as it can be and then apply square root function to this simplified expression.
In the question, we have to find the square root of the expression $49{{\left( {{x}^{2}}-2xy+{{y}^{2}} \right)}^{2}}$. If we try to do square root of this expression, we will be able to find it’s square root but we will not be able to match our answer with any of the options. So, there is a need to simplify the expression so that we can easily find the square root of the given expression and finally, can match our answer with the options given in this question.
Before proceeding with the simplifying process, we must know a formula,
${{\left( x-y \right)}^{2}}={{x}^{2}}-2xy+{{y}^{2}}$
Using this formula, we can also say that,
${{x}^{2}}-2xy+{{y}^{2}}={{\left( x-y \right)}^{2}}..........\left( 1 \right)$
If we substitute ${{x}^{2}}-2xy+{{y}^{2}}$ as ${{\left( x-y \right)}^{2}}$ in any expression, we will get a perfect square term i.e. ${{\left( x-y \right)}^{2}}$ in that particular expression. Since that expression will contain a perfect square term, it will be easy to find the square root of that term.
So, substituting ${{x}^{2}}-2xy+{{y}^{2}}={{\left( x-y \right)}^{2}}$ from equation $\left( 1 \right)$ in the expression given in the question i.e. $49{{\left( {{x}^{2}}-2xy+{{y}^{2}} \right)}^{2}}$, we get,
$\begin{align}
& 49{{\left( {{x}^{2}}-2xy+{{y}^{2}} \right)}^{2}}=49{{\left( {{\left( x-y \right)}^{2}} \right)}^{2}} \\
& \Rightarrow 49{{\left( {{x}^{2}}-2xy+{{y}^{2}} \right)}^{2}}={{\left( 7 \right)}^{2}}{{\left( {{\left( x-y \right)}^{2}} \right)}^{2}} \\
\end{align}$
In the question, we are asked to find the square root of this expression. Applying square root function on this expression, we get,
$\begin{align}
& \sqrt{{{\left( 7 \right)}^{2}}{{\left( {{\left( x-y \right)}^{2}} \right)}^{2}}} \\
& \Rightarrow \pm 7{{\left( x-y \right)}^{2}} \\
\end{align}$
We got two answers for the square root of $49{{\left( {{x}^{2}}-2xy+{{y}^{2}} \right)}^{2}}$. But since only one of the two answers is there in the options, we will mark only that option as our answer.
Hence, the answer is option (d).
Note: There is a possibility that the examiner may have given both $\pm 7{{\left( x-y \right)}^{2}}$ in the options. So, in that case, we have to mark both the options as our answer. Also, even without solving completely, one can find the answer from the options by eliminating the other options if one can identify by looking at the question that ${{x}^{2}}-2xy+{{y}^{2}}$ can be also written as ${{\left( x-y \right)}^{2}}$.
In the question, we have to find the square root of the expression $49{{\left( {{x}^{2}}-2xy+{{y}^{2}} \right)}^{2}}$. If we try to do square root of this expression, we will be able to find it’s square root but we will not be able to match our answer with any of the options. So, there is a need to simplify the expression so that we can easily find the square root of the given expression and finally, can match our answer with the options given in this question.
Before proceeding with the simplifying process, we must know a formula,
${{\left( x-y \right)}^{2}}={{x}^{2}}-2xy+{{y}^{2}}$
Using this formula, we can also say that,
${{x}^{2}}-2xy+{{y}^{2}}={{\left( x-y \right)}^{2}}..........\left( 1 \right)$
If we substitute ${{x}^{2}}-2xy+{{y}^{2}}$ as ${{\left( x-y \right)}^{2}}$ in any expression, we will get a perfect square term i.e. ${{\left( x-y \right)}^{2}}$ in that particular expression. Since that expression will contain a perfect square term, it will be easy to find the square root of that term.
So, substituting ${{x}^{2}}-2xy+{{y}^{2}}={{\left( x-y \right)}^{2}}$ from equation $\left( 1 \right)$ in the expression given in the question i.e. $49{{\left( {{x}^{2}}-2xy+{{y}^{2}} \right)}^{2}}$, we get,
$\begin{align}
& 49{{\left( {{x}^{2}}-2xy+{{y}^{2}} \right)}^{2}}=49{{\left( {{\left( x-y \right)}^{2}} \right)}^{2}} \\
& \Rightarrow 49{{\left( {{x}^{2}}-2xy+{{y}^{2}} \right)}^{2}}={{\left( 7 \right)}^{2}}{{\left( {{\left( x-y \right)}^{2}} \right)}^{2}} \\
\end{align}$
In the question, we are asked to find the square root of this expression. Applying square root function on this expression, we get,
$\begin{align}
& \sqrt{{{\left( 7 \right)}^{2}}{{\left( {{\left( x-y \right)}^{2}} \right)}^{2}}} \\
& \Rightarrow \pm 7{{\left( x-y \right)}^{2}} \\
\end{align}$
We got two answers for the square root of $49{{\left( {{x}^{2}}-2xy+{{y}^{2}} \right)}^{2}}$. But since only one of the two answers is there in the options, we will mark only that option as our answer.
Hence, the answer is option (d).
Note: There is a possibility that the examiner may have given both $\pm 7{{\left( x-y \right)}^{2}}$ in the options. So, in that case, we have to mark both the options as our answer. Also, even without solving completely, one can find the answer from the options by eliminating the other options if one can identify by looking at the question that ${{x}^{2}}-2xy+{{y}^{2}}$ can be also written as ${{\left( x-y \right)}^{2}}$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE