Answer
Verified
503.7k+ views
Hint: Use simple trigonometric formulas.
As we know that,
$
\cos 2x = 1 - 2{\sin ^2}x \\
\therefore {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2} \\
$
Given: $\sin x + \dfrac{1}{2}\cos x = {\sin ^2}\left( {x + \dfrac{\pi }{4}} \right)$
Substituting the value of \[\sin x\], we get
$
\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 - \cos \left( {2x + \dfrac{\pi }{2}} \right)} \right) \\
\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 + \sin 2x} \right){\text{ }}\left( {\because \cos \left( {\dfrac{\pi }{2} + \theta } \right) = - \sin \theta } \right) \\
\Rightarrow \dfrac{{2\sin x + \cos x}}{2} = \dfrac{{1 + \sin 2x}}{2} \\
\Rightarrow 2\sin x + \cos x = 1 + \sin 2x \\
$
Now, putting $\sin 2x = 2\sin x\cos x$ in above equation, we get
$
\Rightarrow 2\sin x + \cos x = 1 + 2\sin x\cos x \\
\Rightarrow 2\sin x\cos x - 2\sin x - \cos x + 1 = 0 \\
$
Now taking $2\sin x$ common, we get
$
\Rightarrow 2\sin x\left( {\cos x - 1} \right) - 1\left( {\cos x - 1} \right) = 0 \\
\Rightarrow \left( {2\sin x - 1} \right)\left( {\cos x - 1} \right) = 0 \\
$
Either $\left( {2\sin x - 1} \right) = 0$ or $\left( {\cos x - 1} \right) = 0$.
If we take $\left( {2\sin x - 1} \right) = 0$, then
$
\Rightarrow \left( {2\sin x - 1} \right) = 0 \\
\Rightarrow 2\sin x = 1 \\
\Rightarrow \sin x = \dfrac{1}{2} \\
\Rightarrow x = \dfrac{\pi }{6},\dfrac{{5\pi }}{6} \\
$
And if we take $\left( {\cos x - 1} \right) = 0$, then
$
\Rightarrow \left( {\cos x - 1} \right) = 0 \\
\Rightarrow \cos x = 1 \\
\Rightarrow x = {0^ \circ } \\
$
Now, $x \in \left[ {0,\pi } \right]$is given.
So, the sum of all $x$ is.
\[
x = \dfrac{\pi }{6} + \dfrac{{5\pi }}{6} + 0 \\
x = \dfrac{{6\pi }}{6} \\
x = \pi \\
\]
Hence, the correct option is C.
Note: Whenever there are trigonometric equations with range given for the angle, always try to solve them by using trigonometric formulas and identities. Also, try to remember the values of basic trigonometric functions with simple angles.
As we know that,
$
\cos 2x = 1 - 2{\sin ^2}x \\
\therefore {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2} \\
$
Given: $\sin x + \dfrac{1}{2}\cos x = {\sin ^2}\left( {x + \dfrac{\pi }{4}} \right)$
Substituting the value of \[\sin x\], we get
$
\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 - \cos \left( {2x + \dfrac{\pi }{2}} \right)} \right) \\
\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 + \sin 2x} \right){\text{ }}\left( {\because \cos \left( {\dfrac{\pi }{2} + \theta } \right) = - \sin \theta } \right) \\
\Rightarrow \dfrac{{2\sin x + \cos x}}{2} = \dfrac{{1 + \sin 2x}}{2} \\
\Rightarrow 2\sin x + \cos x = 1 + \sin 2x \\
$
Now, putting $\sin 2x = 2\sin x\cos x$ in above equation, we get
$
\Rightarrow 2\sin x + \cos x = 1 + 2\sin x\cos x \\
\Rightarrow 2\sin x\cos x - 2\sin x - \cos x + 1 = 0 \\
$
Now taking $2\sin x$ common, we get
$
\Rightarrow 2\sin x\left( {\cos x - 1} \right) - 1\left( {\cos x - 1} \right) = 0 \\
\Rightarrow \left( {2\sin x - 1} \right)\left( {\cos x - 1} \right) = 0 \\
$
Either $\left( {2\sin x - 1} \right) = 0$ or $\left( {\cos x - 1} \right) = 0$.
If we take $\left( {2\sin x - 1} \right) = 0$, then
$
\Rightarrow \left( {2\sin x - 1} \right) = 0 \\
\Rightarrow 2\sin x = 1 \\
\Rightarrow \sin x = \dfrac{1}{2} \\
\Rightarrow x = \dfrac{\pi }{6},\dfrac{{5\pi }}{6} \\
$
And if we take $\left( {\cos x - 1} \right) = 0$, then
$
\Rightarrow \left( {\cos x - 1} \right) = 0 \\
\Rightarrow \cos x = 1 \\
\Rightarrow x = {0^ \circ } \\
$
Now, $x \in \left[ {0,\pi } \right]$is given.
So, the sum of all $x$ is.
\[
x = \dfrac{\pi }{6} + \dfrac{{5\pi }}{6} + 0 \\
x = \dfrac{{6\pi }}{6} \\
x = \pi \\
\]
Hence, the correct option is C.
Note: Whenever there are trigonometric equations with range given for the angle, always try to solve them by using trigonometric formulas and identities. Also, try to remember the values of basic trigonometric functions with simple angles.
Recently Updated Pages
During the electrolysis of sodium ethanoate the gas class 11 maths JEE_Main
1bromo3chlorocyclobutane when treated with two equivalents class 11 chem sec 1 JEE_Main
The transalkenes are formed by the reduction of alkynes class 11 chemistry JEE_Main
A uniform rod of length L and mass M is pivoted at class 11 physics JEE_Main
The locus of the midpoint of the chord of contact of class 11 maths JEE_Main
The number of common tangents to the circles x2 + y2 class 11 maths JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE