
The sum of all $x \in \left[ {0,\pi } \right]$ which satisfy the equation $\sin x + \dfrac{1}{2}\cos x = {\sin ^2}\left( {x + \dfrac{\pi }{4}} \right)$is
A. $\dfrac{\pi }{6}$
B. $\dfrac{{5\pi }}{6}$
C. $\pi $
D. $2\pi $
Answer
624k+ views
Hint: Use simple trigonometric formulas.
As we know that,
$
\cos 2x = 1 - 2{\sin ^2}x \\
\therefore {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2} \\
$
Given: $\sin x + \dfrac{1}{2}\cos x = {\sin ^2}\left( {x + \dfrac{\pi }{4}} \right)$
Substituting the value of \[\sin x\], we get
$
\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 - \cos \left( {2x + \dfrac{\pi }{2}} \right)} \right) \\
\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 + \sin 2x} \right){\text{ }}\left( {\because \cos \left( {\dfrac{\pi }{2} + \theta } \right) = - \sin \theta } \right) \\
\Rightarrow \dfrac{{2\sin x + \cos x}}{2} = \dfrac{{1 + \sin 2x}}{2} \\
\Rightarrow 2\sin x + \cos x = 1 + \sin 2x \\
$
Now, putting $\sin 2x = 2\sin x\cos x$ in above equation, we get
$
\Rightarrow 2\sin x + \cos x = 1 + 2\sin x\cos x \\
\Rightarrow 2\sin x\cos x - 2\sin x - \cos x + 1 = 0 \\
$
Now taking $2\sin x$ common, we get
$
\Rightarrow 2\sin x\left( {\cos x - 1} \right) - 1\left( {\cos x - 1} \right) = 0 \\
\Rightarrow \left( {2\sin x - 1} \right)\left( {\cos x - 1} \right) = 0 \\
$
Either $\left( {2\sin x - 1} \right) = 0$ or $\left( {\cos x - 1} \right) = 0$.
If we take $\left( {2\sin x - 1} \right) = 0$, then
$
\Rightarrow \left( {2\sin x - 1} \right) = 0 \\
\Rightarrow 2\sin x = 1 \\
\Rightarrow \sin x = \dfrac{1}{2} \\
\Rightarrow x = \dfrac{\pi }{6},\dfrac{{5\pi }}{6} \\
$
And if we take $\left( {\cos x - 1} \right) = 0$, then
$
\Rightarrow \left( {\cos x - 1} \right) = 0 \\
\Rightarrow \cos x = 1 \\
\Rightarrow x = {0^ \circ } \\
$
Now, $x \in \left[ {0,\pi } \right]$is given.
So, the sum of all $x$ is.
\[
x = \dfrac{\pi }{6} + \dfrac{{5\pi }}{6} + 0 \\
x = \dfrac{{6\pi }}{6} \\
x = \pi \\
\]
Hence, the correct option is C.
Note: Whenever there are trigonometric equations with range given for the angle, always try to solve them by using trigonometric formulas and identities. Also, try to remember the values of basic trigonometric functions with simple angles.
As we know that,
$
\cos 2x = 1 - 2{\sin ^2}x \\
\therefore {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2} \\
$
Given: $\sin x + \dfrac{1}{2}\cos x = {\sin ^2}\left( {x + \dfrac{\pi }{4}} \right)$
Substituting the value of \[\sin x\], we get
$
\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 - \cos \left( {2x + \dfrac{\pi }{2}} \right)} \right) \\
\Rightarrow \sin x + \dfrac{1}{2}\cos x = \dfrac{1}{2}\left( {1 + \sin 2x} \right){\text{ }}\left( {\because \cos \left( {\dfrac{\pi }{2} + \theta } \right) = - \sin \theta } \right) \\
\Rightarrow \dfrac{{2\sin x + \cos x}}{2} = \dfrac{{1 + \sin 2x}}{2} \\
\Rightarrow 2\sin x + \cos x = 1 + \sin 2x \\
$
Now, putting $\sin 2x = 2\sin x\cos x$ in above equation, we get
$
\Rightarrow 2\sin x + \cos x = 1 + 2\sin x\cos x \\
\Rightarrow 2\sin x\cos x - 2\sin x - \cos x + 1 = 0 \\
$
Now taking $2\sin x$ common, we get
$
\Rightarrow 2\sin x\left( {\cos x - 1} \right) - 1\left( {\cos x - 1} \right) = 0 \\
\Rightarrow \left( {2\sin x - 1} \right)\left( {\cos x - 1} \right) = 0 \\
$
Either $\left( {2\sin x - 1} \right) = 0$ or $\left( {\cos x - 1} \right) = 0$.
If we take $\left( {2\sin x - 1} \right) = 0$, then
$
\Rightarrow \left( {2\sin x - 1} \right) = 0 \\
\Rightarrow 2\sin x = 1 \\
\Rightarrow \sin x = \dfrac{1}{2} \\
\Rightarrow x = \dfrac{\pi }{6},\dfrac{{5\pi }}{6} \\
$
And if we take $\left( {\cos x - 1} \right) = 0$, then
$
\Rightarrow \left( {\cos x - 1} \right) = 0 \\
\Rightarrow \cos x = 1 \\
\Rightarrow x = {0^ \circ } \\
$
Now, $x \in \left[ {0,\pi } \right]$is given.
So, the sum of all $x$ is.
\[
x = \dfrac{\pi }{6} + \dfrac{{5\pi }}{6} + 0 \\
x = \dfrac{{6\pi }}{6} \\
x = \pi \\
\]
Hence, the correct option is C.
Note: Whenever there are trigonometric equations with range given for the angle, always try to solve them by using trigonometric formulas and identities. Also, try to remember the values of basic trigonometric functions with simple angles.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

