
The sum of binomial coefficient in the expansion of \[{\left( {x + \dfrac{1}{x}} \right)^n}\] is 64, the term independent of x is equal to
A) 10
B) 20
C) 40
D) 60
Answer
573.6k+ views
Hint: Since the given sum uses a binomial expansion we will find the sum of its binomial coefficients and then the term independent of x.
Complete step-by-step answer:
Using binomial theorem,
\[{(x + a)^n} = n{C_0}{x^n} + n{C_1}{x^{n - 1}}a + n{C_2}{x^{n - 2}}{a^2} + .......n{C_n}{a^n}\]
Here the binomial coefficients are \[n{C_0}\], \[n{C_1}\], \[n{C_2}\]…….
Sum of these binomial coefficients is =\[\sum\nolimits_{r = 0}^n {n{C_r}} = {2^n}\]
\[
\Rightarrow {2^n} = 64 \\
\Rightarrow n = 8 \\
\]
Now the term independent of x is ,
\[{T_{r + 1}} = n{C_r}{(x)^{n - r}}{\left( {\dfrac{1}{x}} \right)^r}\]
\[ \Rightarrow {T_{r + 1}} = 6{C_r}{(x)^{6 - r}}{\left( {\dfrac{1}{x}} \right)^r}\]
\[
\Rightarrow {T_{r + 1}} = 6{C_r}{x^{6 - r - r}} \\
\Rightarrow {T_{r + 1}} = 6{C_r}{x^{6 - 2r}} \\
\]
Since the term is independent of x,
\[
6 - 2r = 0 \\
6 = 2r \\
r = 3 \\
\]
Since r=3 then term independent of x will be,
\[
\Rightarrow {T_{3 + 1}} = 6{C_3} \\
\Rightarrow {T_4} = \dfrac{{6!}}{{3!\left( {6 - 3} \right)!}} \\
\Rightarrow {T_4} = \dfrac{{6!}}{{3!3!}} \\
\Rightarrow {T_4} = \dfrac{{6 \times 5 \times 4}}{{3 \times 2 \times 1}} \\
\Rightarrow {T_4} = 20 \\
\]
So option B is the correct answer.
Additional information:
If n is any positive integer, then
\[\begin{gathered}
{(x + a)^n} = n{C_0}{x^n} + n{C_1}{x^{n - 1}}a + n{C_2}{x^{n - 2}}{a^2} + .......n{C_n}{a^n} \\
{(x + a)^n} = \sum\nolimits_{r = 0}^n {n{C_r}{x^{n - r}}{a^r}} \\
\end{gathered} \]
This is called a binomial theorem.
Here \[n{C_0}\],\[n{C_1}\],\[n{C_2}\]…….\[n{C_n}\] are binomial coefficients.
Where \[n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\] \[0 < r < n\].
Total number of terms in the expansion of \[{(x + a)^n}\] is n+1.
Note: We have to find a term independent of x that is \[{T_{r + 1}}\].
Since the term independent of x so power of x is 0.
The sum of the indices of x and a in each term is n.
Applications of binomial theorem:
Binomial theorem is used in economic prediction. This helps economists to predict that the economy will fall or bounce.
It is also used in architecture or civil engineering to predict the estimates of cost and time required for that project.
Weather forecasting is another field in which binomial theorem is used.
Complete step-by-step answer:
Using binomial theorem,
\[{(x + a)^n} = n{C_0}{x^n} + n{C_1}{x^{n - 1}}a + n{C_2}{x^{n - 2}}{a^2} + .......n{C_n}{a^n}\]
Here the binomial coefficients are \[n{C_0}\], \[n{C_1}\], \[n{C_2}\]…….
Sum of these binomial coefficients is =\[\sum\nolimits_{r = 0}^n {n{C_r}} = {2^n}\]
\[
\Rightarrow {2^n} = 64 \\
\Rightarrow n = 8 \\
\]
Now the term independent of x is ,
\[{T_{r + 1}} = n{C_r}{(x)^{n - r}}{\left( {\dfrac{1}{x}} \right)^r}\]
\[ \Rightarrow {T_{r + 1}} = 6{C_r}{(x)^{6 - r}}{\left( {\dfrac{1}{x}} \right)^r}\]
\[
\Rightarrow {T_{r + 1}} = 6{C_r}{x^{6 - r - r}} \\
\Rightarrow {T_{r + 1}} = 6{C_r}{x^{6 - 2r}} \\
\]
Since the term is independent of x,
\[
6 - 2r = 0 \\
6 = 2r \\
r = 3 \\
\]
Since r=3 then term independent of x will be,
\[
\Rightarrow {T_{3 + 1}} = 6{C_3} \\
\Rightarrow {T_4} = \dfrac{{6!}}{{3!\left( {6 - 3} \right)!}} \\
\Rightarrow {T_4} = \dfrac{{6!}}{{3!3!}} \\
\Rightarrow {T_4} = \dfrac{{6 \times 5 \times 4}}{{3 \times 2 \times 1}} \\
\Rightarrow {T_4} = 20 \\
\]
So option B is the correct answer.
Additional information:
If n is any positive integer, then
\[\begin{gathered}
{(x + a)^n} = n{C_0}{x^n} + n{C_1}{x^{n - 1}}a + n{C_2}{x^{n - 2}}{a^2} + .......n{C_n}{a^n} \\
{(x + a)^n} = \sum\nolimits_{r = 0}^n {n{C_r}{x^{n - r}}{a^r}} \\
\end{gathered} \]
This is called a binomial theorem.
Here \[n{C_0}\],\[n{C_1}\],\[n{C_2}\]…….\[n{C_n}\] are binomial coefficients.
Where \[n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\] \[0 < r < n\].
Total number of terms in the expansion of \[{(x + a)^n}\] is n+1.
Note: We have to find a term independent of x that is \[{T_{r + 1}}\].
Since the term independent of x so power of x is 0.
The sum of the indices of x and a in each term is n.
Applications of binomial theorem:
Binomial theorem is used in economic prediction. This helps economists to predict that the economy will fall or bounce.
It is also used in architecture or civil engineering to predict the estimates of cost and time required for that project.
Weather forecasting is another field in which binomial theorem is used.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

