Answer
Verified
497.4k+ views
Hint: Consider any three natural numbers and from this first find out the sum of the three consecutive natural numbers and then make use of the divisibility test and find out the answer.
Complete step-by-step answer:
Let us consider the three successive natural numbers to be a-1, a, a+1.
Now, we have to find out the cubes of these three consecutive numbers is divisible by what
So, the cubes of these three consecutive numbers would be \[{(a - 1)^3},{a^3},{(a + 1)^3}\]
Now, the sum of the cubes of these numbers would be
${(a - 1)^3} + {a^3} + {(a + 1)^3}$
Now , we know the formula which says ${(a + b)^3} = {a^3} + {b^3} + 3ab(a + b)$
and ${\left( {a - b} \right)^3} = {a^3} + {b^3} - 3ab(a - b)$
So, making use of this formula , we can write
${(a - 1)^3} + {a^3} + {(a + 1)^3}$=${a^3} - 3{a^2} + 3a - 1 + {a^3} + {a^3} + 3{a^2} + 3a + 1$
= $3{a^3} + 6a$
=$3a({a^2} + 2)$
So, the sum of the cubes of three successive natural numbers
=$3a({a^2} + 2)$
In this equation either a or ${a^2} + 2$ has to be a multiple of 3
Now, from this we can clearly say that if a is multiple of 3 , then 3a is a multiple of 9
Else, if a is not a multiple of 3, then ${a^2} + 2$ is a multiple of 3
So, on combining these two results, we can say that $3a({a^2} + 2)$ is a multiple of 9 for all a$ \in $ N
So, from this we can say that the sum of cubes of 3 consecutive natural numbers is divisible by 9.
Note: The three consecutive natural numbers need not be a-1, a, a+1 only. We can take any other three consecutive natural numbers and solve it.
Complete step-by-step answer:
Let us consider the three successive natural numbers to be a-1, a, a+1.
Now, we have to find out the cubes of these three consecutive numbers is divisible by what
So, the cubes of these three consecutive numbers would be \[{(a - 1)^3},{a^3},{(a + 1)^3}\]
Now, the sum of the cubes of these numbers would be
${(a - 1)^3} + {a^3} + {(a + 1)^3}$
Now , we know the formula which says ${(a + b)^3} = {a^3} + {b^3} + 3ab(a + b)$
and ${\left( {a - b} \right)^3} = {a^3} + {b^3} - 3ab(a - b)$
So, making use of this formula , we can write
${(a - 1)^3} + {a^3} + {(a + 1)^3}$=${a^3} - 3{a^2} + 3a - 1 + {a^3} + {a^3} + 3{a^2} + 3a + 1$
= $3{a^3} + 6a$
=$3a({a^2} + 2)$
So, the sum of the cubes of three successive natural numbers
=$3a({a^2} + 2)$
In this equation either a or ${a^2} + 2$ has to be a multiple of 3
Now, from this we can clearly say that if a is multiple of 3 , then 3a is a multiple of 9
Else, if a is not a multiple of 3, then ${a^2} + 2$ is a multiple of 3
So, on combining these two results, we can say that $3a({a^2} + 2)$ is a multiple of 9 for all a$ \in $ N
So, from this we can say that the sum of cubes of 3 consecutive natural numbers is divisible by 9.
Note: The three consecutive natural numbers need not be a-1, a, a+1 only. We can take any other three consecutive natural numbers and solve it.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE