Answer
Verified
499.8k+ views
(Hint: Use the formula of sum of first n terms of A.P. and find first term of A.P. with the help of sum of n terms of A.P.)
The sum of terms is given as,
\[{S_m} = 4{m^2} - m{\text{ }}...{\text{(1)}}\]
Let \[{a_n}\] be \[{n^{th}}\] the term of A.P., then we get,
\[{a_1} = {S_1} = 4{(1)^2} - 1 = 4 - 1 = 3\]
Now, we know that,
\[{S_n} = \dfrac{n}{2}(a + {a_n}){\text{ }}...{\text{(2)}}\]
Also, the value of \[{a_n}\] is given as
\[{a_n} = 107\]
Using the equations and, we get,
\[{S_n} = 4{n^2} - n = \dfrac{n}{2}({a_1} + {a_n})\]
\[4n - 1 = \left( {\dfrac{{3 + 107}}{2}} \right)\]
\[4n - 1 = 55\]
\[n = \dfrac{{56}}{4}\]
\[ \Rightarrow n = 14\]
So, the required solution is \[n = 14\].
Note: In order to solve these types of questions, the first term needs to be calculated first so that the formula for calculating the \[{n^{th}}\]term or the sum, can be applied.
The sum of terms is given as,
\[{S_m} = 4{m^2} - m{\text{ }}...{\text{(1)}}\]
Let \[{a_n}\] be \[{n^{th}}\] the term of A.P., then we get,
\[{a_1} = {S_1} = 4{(1)^2} - 1 = 4 - 1 = 3\]
Now, we know that,
\[{S_n} = \dfrac{n}{2}(a + {a_n}){\text{ }}...{\text{(2)}}\]
Also, the value of \[{a_n}\] is given as
\[{a_n} = 107\]
Using the equations and, we get,
\[{S_n} = 4{n^2} - n = \dfrac{n}{2}({a_1} + {a_n})\]
\[4n - 1 = \left( {\dfrac{{3 + 107}}{2}} \right)\]
\[4n - 1 = 55\]
\[n = \dfrac{{56}}{4}\]
\[ \Rightarrow n = 14\]
So, the required solution is \[n = 14\].
Note: In order to solve these types of questions, the first term needs to be calculated first so that the formula for calculating the \[{n^{th}}\]term or the sum, can be applied.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE