The sum of first m terms of an A.P. is $4{m^2} - m$. if it's ${n^{th{\text{ }}}}$term is $107$,find the value of n.
Answer
Verified
508.8k+ views
(Hint: Use the formula of sum of first n terms of A.P. and find first term of A.P. with the help of sum of n terms of A.P.)
The sum of terms is given as,
\[{S_m} = 4{m^2} - m{\text{ }}...{\text{(1)}}\]
Let \[{a_n}\] be \[{n^{th}}\] the term of A.P., then we get,
\[{a_1} = {S_1} = 4{(1)^2} - 1 = 4 - 1 = 3\]
Now, we know that,
\[{S_n} = \dfrac{n}{2}(a + {a_n}){\text{ }}...{\text{(2)}}\]
Also, the value of \[{a_n}\] is given as
\[{a_n} = 107\]
Using the equations and, we get,
\[{S_n} = 4{n^2} - n = \dfrac{n}{2}({a_1} + {a_n})\]
\[4n - 1 = \left( {\dfrac{{3 + 107}}{2}} \right)\]
\[4n - 1 = 55\]
\[n = \dfrac{{56}}{4}\]
\[ \Rightarrow n = 14\]
So, the required solution is \[n = 14\].
Note: In order to solve these types of questions, the first term needs to be calculated first so that the formula for calculating the \[{n^{th}}\]term or the sum, can be applied.
The sum of terms is given as,
\[{S_m} = 4{m^2} - m{\text{ }}...{\text{(1)}}\]
Let \[{a_n}\] be \[{n^{th}}\] the term of A.P., then we get,
\[{a_1} = {S_1} = 4{(1)^2} - 1 = 4 - 1 = 3\]
Now, we know that,
\[{S_n} = \dfrac{n}{2}(a + {a_n}){\text{ }}...{\text{(2)}}\]
Also, the value of \[{a_n}\] is given as
\[{a_n} = 107\]
Using the equations and, we get,
\[{S_n} = 4{n^2} - n = \dfrac{n}{2}({a_1} + {a_n})\]
\[4n - 1 = \left( {\dfrac{{3 + 107}}{2}} \right)\]
\[4n - 1 = 55\]
\[n = \dfrac{{56}}{4}\]
\[ \Rightarrow n = 14\]
So, the required solution is \[n = 14\].
Note: In order to solve these types of questions, the first term needs to be calculated first so that the formula for calculating the \[{n^{th}}\]term or the sum, can be applied.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 English: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE