Answer
Verified
500.7k+ views
Hint: Consider any point on the given curve and find the tangent to the curve at the considered point. Then take out the intercepts to the obtained tangent and add them, which gives the required solution.
Complete step-by-step answer:
Let \[P\left( {{x_1},{y_1}} \right)\] be a point on the curve \[\sqrt x + \sqrt y = \sqrt a \]
Then, \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a .................................\left( i \right)\]
Now, differentiating the curve \[\sqrt x + \sqrt y = \sqrt a \], we have
\[
\Rightarrow \dfrac{{d\left( {\sqrt x } \right)}}{{dx}} + \dfrac{{d\left( {\sqrt y } \right)}}{{dx}} = \dfrac{{d\left( {\sqrt a } \right)}}{{dx}} \\
\Rightarrow \dfrac{1}{{2\sqrt x }} + \dfrac{1}{{2\sqrt y }}\dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sqrt y }}{{\sqrt x }} \\
\]
So, the slope of the tangent at \[P\left( {{x_1},{y_1}} \right)\] to the curve \[\sqrt x + \sqrt y = \sqrt a \] is
\[{\left( {\dfrac{{dy}}{{dx}}} \right)_P} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}\]
The equation of the tangent at \[P\left( {{x_1},{y_1}} \right)\] to the curve \[\sqrt x + \sqrt y = \sqrt a \] is
\[
y - {y_1} = {\left( {\dfrac{{dy}}{{dx}}} \right)_P}\left( {x - {x_1}} \right) \\
\Rightarrow y - {y_1} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}\left( {x - {x_1}} \right) \\
\Rightarrow \left( {y - {y_1}} \right)\sqrt {{x_1}} = - \sqrt {{y_1}} \left( {x - {x_1}} \right) \\
\Rightarrow y\sqrt {{x_1}} - {y_1}\sqrt {{x_1}} = - x\sqrt {{y_1}} + {x_1}\sqrt {{y_1}} \\
\Rightarrow x\sqrt {{y_1}} + y\sqrt {{x_1}} = {x_1}\sqrt {{y_1}} + {y_1}\sqrt {{x_1}} \\
\]
Dividing both sides with \[\sqrt {{x_1}} \sqrt {{y_1}} \] we have
\[ \Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt {{x_1}} + \sqrt {{y_1}} \]
Since, \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a \]
\[
\Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt a \\
\Rightarrow \dfrac{x}{{\sqrt a \sqrt {{x_1}} }} + \dfrac{y}{{\sqrt a \sqrt {{y_1}} }} = 1 \\
\Rightarrow \dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1 \\
\]
We know that if \[\dfrac{x}{a} + \dfrac{y}{b} = 1\] is the equation of the line, then the intercepts upon the coordinate axes is \[a{\text{ and }}b\].
So, the intercepts of the formed tangent \[\dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1\] is \[\sqrt {a{x_1}} {\text{ and }}\sqrt {a{y_1}} \].
Therefore, the sum of the intercepts is
\[
\Rightarrow \sqrt {a{x_1}} + \sqrt {a{y_1}} \\
\Rightarrow \sqrt a \left( {\sqrt {{x_1}} + \sqrt {{y_1}} } \right) \\
\]
Since, we have \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a \]
\[
\Rightarrow \sqrt a \left( {\sqrt a } \right) \\
\Rightarrow a \\
\]
Therefore, the sum of the intercepts of the curve \[\sqrt x + \sqrt y = \sqrt a \] upon the coordinate axes is \[a\].
Thus, the correct option is B. \[a\]
Note: Here the tangent must touch both the coordinate axes to form intercepts. In the given above formula \[a\] is the length of \[x\] axis intercept and \[b\] is the length of \[y\] axis intercept.
Complete step-by-step answer:
Let \[P\left( {{x_1},{y_1}} \right)\] be a point on the curve \[\sqrt x + \sqrt y = \sqrt a \]
Then, \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a .................................\left( i \right)\]
Now, differentiating the curve \[\sqrt x + \sqrt y = \sqrt a \], we have
\[
\Rightarrow \dfrac{{d\left( {\sqrt x } \right)}}{{dx}} + \dfrac{{d\left( {\sqrt y } \right)}}{{dx}} = \dfrac{{d\left( {\sqrt a } \right)}}{{dx}} \\
\Rightarrow \dfrac{1}{{2\sqrt x }} + \dfrac{1}{{2\sqrt y }}\dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sqrt y }}{{\sqrt x }} \\
\]
So, the slope of the tangent at \[P\left( {{x_1},{y_1}} \right)\] to the curve \[\sqrt x + \sqrt y = \sqrt a \] is
\[{\left( {\dfrac{{dy}}{{dx}}} \right)_P} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}\]
The equation of the tangent at \[P\left( {{x_1},{y_1}} \right)\] to the curve \[\sqrt x + \sqrt y = \sqrt a \] is
\[
y - {y_1} = {\left( {\dfrac{{dy}}{{dx}}} \right)_P}\left( {x - {x_1}} \right) \\
\Rightarrow y - {y_1} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}\left( {x - {x_1}} \right) \\
\Rightarrow \left( {y - {y_1}} \right)\sqrt {{x_1}} = - \sqrt {{y_1}} \left( {x - {x_1}} \right) \\
\Rightarrow y\sqrt {{x_1}} - {y_1}\sqrt {{x_1}} = - x\sqrt {{y_1}} + {x_1}\sqrt {{y_1}} \\
\Rightarrow x\sqrt {{y_1}} + y\sqrt {{x_1}} = {x_1}\sqrt {{y_1}} + {y_1}\sqrt {{x_1}} \\
\]
Dividing both sides with \[\sqrt {{x_1}} \sqrt {{y_1}} \] we have
\[ \Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt {{x_1}} + \sqrt {{y_1}} \]
Since, \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a \]
\[
\Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt a \\
\Rightarrow \dfrac{x}{{\sqrt a \sqrt {{x_1}} }} + \dfrac{y}{{\sqrt a \sqrt {{y_1}} }} = 1 \\
\Rightarrow \dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1 \\
\]
We know that if \[\dfrac{x}{a} + \dfrac{y}{b} = 1\] is the equation of the line, then the intercepts upon the coordinate axes is \[a{\text{ and }}b\].
So, the intercepts of the formed tangent \[\dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1\] is \[\sqrt {a{x_1}} {\text{ and }}\sqrt {a{y_1}} \].
Therefore, the sum of the intercepts is
\[
\Rightarrow \sqrt {a{x_1}} + \sqrt {a{y_1}} \\
\Rightarrow \sqrt a \left( {\sqrt {{x_1}} + \sqrt {{y_1}} } \right) \\
\]
Since, we have \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a \]
\[
\Rightarrow \sqrt a \left( {\sqrt a } \right) \\
\Rightarrow a \\
\]
Therefore, the sum of the intercepts of the curve \[\sqrt x + \sqrt y = \sqrt a \] upon the coordinate axes is \[a\].
Thus, the correct option is B. \[a\]
Note: Here the tangent must touch both the coordinate axes to form intercepts. In the given above formula \[a\] is the length of \[x\] axis intercept and \[b\] is the length of \[y\] axis intercept.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE