
The sum of intercepts to the tangents to the curve \[\sqrt x + \sqrt y = \sqrt a \] upon the coordinate axes is
A. \[2a\]
B. \[a\]
C. \[2\sqrt 2 a\]
D. None of these
Answer
607.8k+ views
Hint: Consider any point on the given curve and find the tangent to the curve at the considered point. Then take out the intercepts to the obtained tangent and add them, which gives the required solution.
Complete step-by-step answer:
Let \[P\left( {{x_1},{y_1}} \right)\] be a point on the curve \[\sqrt x + \sqrt y = \sqrt a \]
Then, \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a .................................\left( i \right)\]
Now, differentiating the curve \[\sqrt x + \sqrt y = \sqrt a \], we have
\[
\Rightarrow \dfrac{{d\left( {\sqrt x } \right)}}{{dx}} + \dfrac{{d\left( {\sqrt y } \right)}}{{dx}} = \dfrac{{d\left( {\sqrt a } \right)}}{{dx}} \\
\Rightarrow \dfrac{1}{{2\sqrt x }} + \dfrac{1}{{2\sqrt y }}\dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sqrt y }}{{\sqrt x }} \\
\]
So, the slope of the tangent at \[P\left( {{x_1},{y_1}} \right)\] to the curve \[\sqrt x + \sqrt y = \sqrt a \] is
\[{\left( {\dfrac{{dy}}{{dx}}} \right)_P} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}\]
The equation of the tangent at \[P\left( {{x_1},{y_1}} \right)\] to the curve \[\sqrt x + \sqrt y = \sqrt a \] is
\[
y - {y_1} = {\left( {\dfrac{{dy}}{{dx}}} \right)_P}\left( {x - {x_1}} \right) \\
\Rightarrow y - {y_1} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}\left( {x - {x_1}} \right) \\
\Rightarrow \left( {y - {y_1}} \right)\sqrt {{x_1}} = - \sqrt {{y_1}} \left( {x - {x_1}} \right) \\
\Rightarrow y\sqrt {{x_1}} - {y_1}\sqrt {{x_1}} = - x\sqrt {{y_1}} + {x_1}\sqrt {{y_1}} \\
\Rightarrow x\sqrt {{y_1}} + y\sqrt {{x_1}} = {x_1}\sqrt {{y_1}} + {y_1}\sqrt {{x_1}} \\
\]
Dividing both sides with \[\sqrt {{x_1}} \sqrt {{y_1}} \] we have
\[ \Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt {{x_1}} + \sqrt {{y_1}} \]
Since, \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a \]
\[
\Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt a \\
\Rightarrow \dfrac{x}{{\sqrt a \sqrt {{x_1}} }} + \dfrac{y}{{\sqrt a \sqrt {{y_1}} }} = 1 \\
\Rightarrow \dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1 \\
\]
We know that if \[\dfrac{x}{a} + \dfrac{y}{b} = 1\] is the equation of the line, then the intercepts upon the coordinate axes is \[a{\text{ and }}b\].
So, the intercepts of the formed tangent \[\dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1\] is \[\sqrt {a{x_1}} {\text{ and }}\sqrt {a{y_1}} \].
Therefore, the sum of the intercepts is
\[
\Rightarrow \sqrt {a{x_1}} + \sqrt {a{y_1}} \\
\Rightarrow \sqrt a \left( {\sqrt {{x_1}} + \sqrt {{y_1}} } \right) \\
\]
Since, we have \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a \]
\[
\Rightarrow \sqrt a \left( {\sqrt a } \right) \\
\Rightarrow a \\
\]
Therefore, the sum of the intercepts of the curve \[\sqrt x + \sqrt y = \sqrt a \] upon the coordinate axes is \[a\].
Thus, the correct option is B. \[a\]
Note: Here the tangent must touch both the coordinate axes to form intercepts. In the given above formula \[a\] is the length of \[x\] axis intercept and \[b\] is the length of \[y\] axis intercept.
Complete step-by-step answer:
Let \[P\left( {{x_1},{y_1}} \right)\] be a point on the curve \[\sqrt x + \sqrt y = \sqrt a \]
Then, \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a .................................\left( i \right)\]
Now, differentiating the curve \[\sqrt x + \sqrt y = \sqrt a \], we have
\[
\Rightarrow \dfrac{{d\left( {\sqrt x } \right)}}{{dx}} + \dfrac{{d\left( {\sqrt y } \right)}}{{dx}} = \dfrac{{d\left( {\sqrt a } \right)}}{{dx}} \\
\Rightarrow \dfrac{1}{{2\sqrt x }} + \dfrac{1}{{2\sqrt y }}\dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sqrt y }}{{\sqrt x }} \\
\]
So, the slope of the tangent at \[P\left( {{x_1},{y_1}} \right)\] to the curve \[\sqrt x + \sqrt y = \sqrt a \] is
\[{\left( {\dfrac{{dy}}{{dx}}} \right)_P} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}\]
The equation of the tangent at \[P\left( {{x_1},{y_1}} \right)\] to the curve \[\sqrt x + \sqrt y = \sqrt a \] is
\[
y - {y_1} = {\left( {\dfrac{{dy}}{{dx}}} \right)_P}\left( {x - {x_1}} \right) \\
\Rightarrow y - {y_1} = - \dfrac{{\sqrt {{y_1}} }}{{\sqrt {{x_1}} }}\left( {x - {x_1}} \right) \\
\Rightarrow \left( {y - {y_1}} \right)\sqrt {{x_1}} = - \sqrt {{y_1}} \left( {x - {x_1}} \right) \\
\Rightarrow y\sqrt {{x_1}} - {y_1}\sqrt {{x_1}} = - x\sqrt {{y_1}} + {x_1}\sqrt {{y_1}} \\
\Rightarrow x\sqrt {{y_1}} + y\sqrt {{x_1}} = {x_1}\sqrt {{y_1}} + {y_1}\sqrt {{x_1}} \\
\]
Dividing both sides with \[\sqrt {{x_1}} \sqrt {{y_1}} \] we have
\[ \Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt {{x_1}} + \sqrt {{y_1}} \]
Since, \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a \]
\[
\Rightarrow \dfrac{x}{{\sqrt {{x_1}} }} + \dfrac{y}{{\sqrt {{y_1}} }} = \sqrt a \\
\Rightarrow \dfrac{x}{{\sqrt a \sqrt {{x_1}} }} + \dfrac{y}{{\sqrt a \sqrt {{y_1}} }} = 1 \\
\Rightarrow \dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1 \\
\]
We know that if \[\dfrac{x}{a} + \dfrac{y}{b} = 1\] is the equation of the line, then the intercepts upon the coordinate axes is \[a{\text{ and }}b\].
So, the intercepts of the formed tangent \[\dfrac{x}{{\sqrt {a{x_1}} }} + \dfrac{y}{{\sqrt {a{y_1}} }} = 1\] is \[\sqrt {a{x_1}} {\text{ and }}\sqrt {a{y_1}} \].
Therefore, the sum of the intercepts is
\[
\Rightarrow \sqrt {a{x_1}} + \sqrt {a{y_1}} \\
\Rightarrow \sqrt a \left( {\sqrt {{x_1}} + \sqrt {{y_1}} } \right) \\
\]
Since, we have \[\sqrt {{x_1}} + \sqrt {{y_1}} = \sqrt a \]
\[
\Rightarrow \sqrt a \left( {\sqrt a } \right) \\
\Rightarrow a \\
\]
Therefore, the sum of the intercepts of the curve \[\sqrt x + \sqrt y = \sqrt a \] upon the coordinate axes is \[a\].
Thus, the correct option is B. \[a\]
Note: Here the tangent must touch both the coordinate axes to form intercepts. In the given above formula \[a\] is the length of \[x\] axis intercept and \[b\] is the length of \[y\] axis intercept.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

