
The sum of n terms of two \[AP\] are in ratio $\left( {5n + 4} \right):\left( {9n + 6} \right)$ Find the ratio of their ${18^{th}}$ term?
Answer
420.9k+ views
Hint: In this problem, we need to find ratio of \[{18^{th}}\text{term of first A.p}\] to that of\[{18^{th}} \text{term of second A.p}\], first we will find the number of terms that is $n$ and then we will substitute in the given equation to get the required solution.
Formulas used:
${n^{th}}$ term, ${a_n} = a + \left( {n - 1} \right)d$
Sum of $n$ terms, ${S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$
$a = $ first term of $A.P$
$d = $ Common difference of $A.P$
Complete step-by-step solution:
We need to find, ratio of \[{18^{th}}\text{term of first A.p}\] to that of \[{18^{th}}\text{term of second A.p}\]
That is \[\dfrac{{{{18}^{th}}\text{term of first A.P}}}{{{{18}^{th}}\text{term of second A.p}}} = ?\]
Let, sum of n terms of first $A.P$$ = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$ and
Sum of n terms of second $A.P$ \[ = \dfrac{n}{2}\left[ {2{a^1} + \left( {n - 1} \right){d^1}} \right]\]
Where, $a = $ first term of ${1^{st}}$ $A.P$
$d = $ Common difference of ${1^{st}}$ $A.P$
${a^1} = $ First term of ${2^{nd}}$ $A.P$
${d^1} = $ Common difference of ${2^{nd}}$ $A.P$
Given: sum of n terms of two $AP$ are in ratio $ = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}$
That is,
Sum of n terms of first $A.P$ : Sum of n terms of second $A.P$ = $\left( {5n + 4} \right):\left( {9n + 6} \right)$
\[\dfrac{{\dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]}}{{\dfrac{n}{2}\left[ {2{a^1} + \left( {n - 1} \right){d^1}} \right]}} = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}\]
\[\Rightarrow \dfrac{{n\left[ {a + \dfrac{{\left( {n - 1} \right)}}{2}d} \right]}}{{n\left[ {{a^1} + \dfrac{{\left( {n - 1} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}\]
On cancelling $n$ , we can write above equation as
\[\dfrac{{\left[ {a + \dfrac{{\left( {n - 1} \right)}}{2}d} \right]}}{{\left[ {{a^1} + \dfrac{{\left( {n - 1} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}\] …….$\left( 1 \right)$
As we need to need to find ratio of their ${18^{th}}$ term
That is, ${18^{th}}$ term of first $A.P$ : ${18^{th}}$ term of second $A.P$ = $a + \left( {18 - 1} \right)d:{a^1} + \left( {18 - 1} \right){d^1}$
$ = \dfrac{{a + \left( {18 - 1} \right)d}}{{{a^1} + \left( {18 - 1} \right){d^1}}}$
\[ = \dfrac{{a + 17d}}{{{a^1} + 17{d^1}}}\]
Here, \[\dfrac{{n - 1}}{2} = 17\]
$n - 1 = 17 \times 2$
$n - 1 = 34$
$\therefore n = 35$
Substituting the value of $n$ in equation $\left( 1 \right)$ we get,
\[\dfrac{{\left[ {a + \dfrac{{\left( {35 - 1} \right)}}{2}d} \right]}}{{\left[ {{a^1} + \dfrac{{\left( {35 - 1} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5\left( {35} \right) + 4} \right)}}{{\left( {9\left( {35} \right) + 6} \right)}}\]
On simplifying, we get
\[\dfrac{{\left[ {a + \dfrac{{\left( {34} \right)}}{2}d} \right]}}{{\left[ {{a^1} + \dfrac{{\left( {34} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5\left( {35} \right) + 4} \right)}}{{\left( {9\left( {35} \right) + 6} \right)}}\]
Therefore, \[\dfrac{{\left[ {a + 17d} \right]}}{{\left[ {{a^1} + 17{d^1}} \right]}} = \dfrac{{\left( {5\left( {35} \right) + 4} \right)}}{{\left( {9\left( {35} \right) + 6} \right)}}\]
\[\dfrac{{\left[ {a + 17d} \right]}}{{\left[ {{a^1} + 17{d^1}} \right]}} = \dfrac{{\left( {175 + 4} \right)}}{{\left( {315 + 6} \right)}}\]
Hence, \[\dfrac{{{{18}^{th}}\text{term of first A.P}}}{{{{18}^{th}}\text{term of second A.p}}} = \dfrac{{179}}{{321}}\]
Therefore, the ratio of ${18^{th}}$ term of ${1^{st}}$ $A.P$ and ${18^{th}}$ term of ${2^{nd}}$ $A.P$ is $179:321$
Note: A progression is said to be a special type of sequence in which it is possible to obtain a formula for ${n^{th}}$ term. Arithmetic progression is the a sequence of number in which it will be having the difference of any two consecutive number will remain constant
Formulas used:
${n^{th}}$ term, ${a_n} = a + \left( {n - 1} \right)d$
Sum of $n$ terms, ${S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$
$a = $ first term of $A.P$
$d = $ Common difference of $A.P$
Complete step-by-step solution:
We need to find, ratio of \[{18^{th}}\text{term of first A.p}\] to that of \[{18^{th}}\text{term of second A.p}\]
That is \[\dfrac{{{{18}^{th}}\text{term of first A.P}}}{{{{18}^{th}}\text{term of second A.p}}} = ?\]
Let, sum of n terms of first $A.P$$ = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$ and
Sum of n terms of second $A.P$ \[ = \dfrac{n}{2}\left[ {2{a^1} + \left( {n - 1} \right){d^1}} \right]\]
Where, $a = $ first term of ${1^{st}}$ $A.P$
$d = $ Common difference of ${1^{st}}$ $A.P$
${a^1} = $ First term of ${2^{nd}}$ $A.P$
${d^1} = $ Common difference of ${2^{nd}}$ $A.P$
Given: sum of n terms of two $AP$ are in ratio $ = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}$
That is,
Sum of n terms of first $A.P$ : Sum of n terms of second $A.P$ = $\left( {5n + 4} \right):\left( {9n + 6} \right)$
\[\dfrac{{\dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]}}{{\dfrac{n}{2}\left[ {2{a^1} + \left( {n - 1} \right){d^1}} \right]}} = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}\]
\[\Rightarrow \dfrac{{n\left[ {a + \dfrac{{\left( {n - 1} \right)}}{2}d} \right]}}{{n\left[ {{a^1} + \dfrac{{\left( {n - 1} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}\]
On cancelling $n$ , we can write above equation as
\[\dfrac{{\left[ {a + \dfrac{{\left( {n - 1} \right)}}{2}d} \right]}}{{\left[ {{a^1} + \dfrac{{\left( {n - 1} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}\] …….$\left( 1 \right)$
As we need to need to find ratio of their ${18^{th}}$ term
That is, ${18^{th}}$ term of first $A.P$ : ${18^{th}}$ term of second $A.P$ = $a + \left( {18 - 1} \right)d:{a^1} + \left( {18 - 1} \right){d^1}$
$ = \dfrac{{a + \left( {18 - 1} \right)d}}{{{a^1} + \left( {18 - 1} \right){d^1}}}$
\[ = \dfrac{{a + 17d}}{{{a^1} + 17{d^1}}}\]
Here, \[\dfrac{{n - 1}}{2} = 17\]
$n - 1 = 17 \times 2$
$n - 1 = 34$
$\therefore n = 35$
Substituting the value of $n$ in equation $\left( 1 \right)$ we get,
\[\dfrac{{\left[ {a + \dfrac{{\left( {35 - 1} \right)}}{2}d} \right]}}{{\left[ {{a^1} + \dfrac{{\left( {35 - 1} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5\left( {35} \right) + 4} \right)}}{{\left( {9\left( {35} \right) + 6} \right)}}\]
On simplifying, we get
\[\dfrac{{\left[ {a + \dfrac{{\left( {34} \right)}}{2}d} \right]}}{{\left[ {{a^1} + \dfrac{{\left( {34} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5\left( {35} \right) + 4} \right)}}{{\left( {9\left( {35} \right) + 6} \right)}}\]
Therefore, \[\dfrac{{\left[ {a + 17d} \right]}}{{\left[ {{a^1} + 17{d^1}} \right]}} = \dfrac{{\left( {5\left( {35} \right) + 4} \right)}}{{\left( {9\left( {35} \right) + 6} \right)}}\]
\[\dfrac{{\left[ {a + 17d} \right]}}{{\left[ {{a^1} + 17{d^1}} \right]}} = \dfrac{{\left( {175 + 4} \right)}}{{\left( {315 + 6} \right)}}\]
Hence, \[\dfrac{{{{18}^{th}}\text{term of first A.P}}}{{{{18}^{th}}\text{term of second A.p}}} = \dfrac{{179}}{{321}}\]
Therefore, the ratio of ${18^{th}}$ term of ${1^{st}}$ $A.P$ and ${18^{th}}$ term of ${2^{nd}}$ $A.P$ is $179:321$
Note: A progression is said to be a special type of sequence in which it is possible to obtain a formula for ${n^{th}}$ term. Arithmetic progression is the a sequence of number in which it will be having the difference of any two consecutive number will remain constant
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Truly whole mankind is one was declared by the Kannada class 10 social science CBSE

Explain the three major features of the shiwaliks class 10 social science CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

What are the public facilities provided by the government? Also explain each facility

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Question An example of homologous organs is a Our arm class 10 biology CBSE
