
The sum of n terms of two \[AP\] are in ratio $\left( {5n + 4} \right):\left( {9n + 6} \right)$ Find the ratio of their ${18^{th}}$ term?
Answer
520.5k+ views
Hint: In this problem, we need to find ratio of \[{18^{th}}\text{term of first A.p}\] to that of\[{18^{th}} \text{term of second A.p}\], first we will find the number of terms that is $n$ and then we will substitute in the given equation to get the required solution.
Formulas used:
${n^{th}}$ term, ${a_n} = a + \left( {n - 1} \right)d$
Sum of $n$ terms, ${S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$
$a = $ first term of $A.P$
$d = $ Common difference of $A.P$
Complete step-by-step solution:
We need to find, ratio of \[{18^{th}}\text{term of first A.p}\] to that of \[{18^{th}}\text{term of second A.p}\]
That is \[\dfrac{{{{18}^{th}}\text{term of first A.P}}}{{{{18}^{th}}\text{term of second A.p}}} = ?\]
Let, sum of n terms of first $A.P$$ = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$ and
Sum of n terms of second $A.P$ \[ = \dfrac{n}{2}\left[ {2{a^1} + \left( {n - 1} \right){d^1}} \right]\]
Where, $a = $ first term of ${1^{st}}$ $A.P$
$d = $ Common difference of ${1^{st}}$ $A.P$
${a^1} = $ First term of ${2^{nd}}$ $A.P$
${d^1} = $ Common difference of ${2^{nd}}$ $A.P$
Given: sum of n terms of two $AP$ are in ratio $ = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}$
That is,
Sum of n terms of first $A.P$ : Sum of n terms of second $A.P$ = $\left( {5n + 4} \right):\left( {9n + 6} \right)$
\[\dfrac{{\dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]}}{{\dfrac{n}{2}\left[ {2{a^1} + \left( {n - 1} \right){d^1}} \right]}} = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}\]
\[\Rightarrow \dfrac{{n\left[ {a + \dfrac{{\left( {n - 1} \right)}}{2}d} \right]}}{{n\left[ {{a^1} + \dfrac{{\left( {n - 1} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}\]
On cancelling $n$ , we can write above equation as
\[\dfrac{{\left[ {a + \dfrac{{\left( {n - 1} \right)}}{2}d} \right]}}{{\left[ {{a^1} + \dfrac{{\left( {n - 1} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}\] …….$\left( 1 \right)$
As we need to need to find ratio of their ${18^{th}}$ term
That is, ${18^{th}}$ term of first $A.P$ : ${18^{th}}$ term of second $A.P$ = $a + \left( {18 - 1} \right)d:{a^1} + \left( {18 - 1} \right){d^1}$
$ = \dfrac{{a + \left( {18 - 1} \right)d}}{{{a^1} + \left( {18 - 1} \right){d^1}}}$
\[ = \dfrac{{a + 17d}}{{{a^1} + 17{d^1}}}\]
Here, \[\dfrac{{n - 1}}{2} = 17\]
$n - 1 = 17 \times 2$
$n - 1 = 34$
$\therefore n = 35$
Substituting the value of $n$ in equation $\left( 1 \right)$ we get,
\[\dfrac{{\left[ {a + \dfrac{{\left( {35 - 1} \right)}}{2}d} \right]}}{{\left[ {{a^1} + \dfrac{{\left( {35 - 1} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5\left( {35} \right) + 4} \right)}}{{\left( {9\left( {35} \right) + 6} \right)}}\]
On simplifying, we get
\[\dfrac{{\left[ {a + \dfrac{{\left( {34} \right)}}{2}d} \right]}}{{\left[ {{a^1} + \dfrac{{\left( {34} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5\left( {35} \right) + 4} \right)}}{{\left( {9\left( {35} \right) + 6} \right)}}\]
Therefore, \[\dfrac{{\left[ {a + 17d} \right]}}{{\left[ {{a^1} + 17{d^1}} \right]}} = \dfrac{{\left( {5\left( {35} \right) + 4} \right)}}{{\left( {9\left( {35} \right) + 6} \right)}}\]
\[\dfrac{{\left[ {a + 17d} \right]}}{{\left[ {{a^1} + 17{d^1}} \right]}} = \dfrac{{\left( {175 + 4} \right)}}{{\left( {315 + 6} \right)}}\]
Hence, \[\dfrac{{{{18}^{th}}\text{term of first A.P}}}{{{{18}^{th}}\text{term of second A.p}}} = \dfrac{{179}}{{321}}\]
Therefore, the ratio of ${18^{th}}$ term of ${1^{st}}$ $A.P$ and ${18^{th}}$ term of ${2^{nd}}$ $A.P$ is $179:321$
Note: A progression is said to be a special type of sequence in which it is possible to obtain a formula for ${n^{th}}$ term. Arithmetic progression is the a sequence of number in which it will be having the difference of any two consecutive number will remain constant
Formulas used:
${n^{th}}$ term, ${a_n} = a + \left( {n - 1} \right)d$
Sum of $n$ terms, ${S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$
$a = $ first term of $A.P$
$d = $ Common difference of $A.P$
Complete step-by-step solution:
We need to find, ratio of \[{18^{th}}\text{term of first A.p}\] to that of \[{18^{th}}\text{term of second A.p}\]
That is \[\dfrac{{{{18}^{th}}\text{term of first A.P}}}{{{{18}^{th}}\text{term of second A.p}}} = ?\]
Let, sum of n terms of first $A.P$$ = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$ and
Sum of n terms of second $A.P$ \[ = \dfrac{n}{2}\left[ {2{a^1} + \left( {n - 1} \right){d^1}} \right]\]
Where, $a = $ first term of ${1^{st}}$ $A.P$
$d = $ Common difference of ${1^{st}}$ $A.P$
${a^1} = $ First term of ${2^{nd}}$ $A.P$
${d^1} = $ Common difference of ${2^{nd}}$ $A.P$
Given: sum of n terms of two $AP$ are in ratio $ = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}$
That is,
Sum of n terms of first $A.P$ : Sum of n terms of second $A.P$ = $\left( {5n + 4} \right):\left( {9n + 6} \right)$
\[\dfrac{{\dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]}}{{\dfrac{n}{2}\left[ {2{a^1} + \left( {n - 1} \right){d^1}} \right]}} = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}\]
\[\Rightarrow \dfrac{{n\left[ {a + \dfrac{{\left( {n - 1} \right)}}{2}d} \right]}}{{n\left[ {{a^1} + \dfrac{{\left( {n - 1} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}\]
On cancelling $n$ , we can write above equation as
\[\dfrac{{\left[ {a + \dfrac{{\left( {n - 1} \right)}}{2}d} \right]}}{{\left[ {{a^1} + \dfrac{{\left( {n - 1} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5n + 4} \right)}}{{\left( {9n + 6} \right)}}\] …….$\left( 1 \right)$
As we need to need to find ratio of their ${18^{th}}$ term
That is, ${18^{th}}$ term of first $A.P$ : ${18^{th}}$ term of second $A.P$ = $a + \left( {18 - 1} \right)d:{a^1} + \left( {18 - 1} \right){d^1}$
$ = \dfrac{{a + \left( {18 - 1} \right)d}}{{{a^1} + \left( {18 - 1} \right){d^1}}}$
\[ = \dfrac{{a + 17d}}{{{a^1} + 17{d^1}}}\]
Here, \[\dfrac{{n - 1}}{2} = 17\]
$n - 1 = 17 \times 2$
$n - 1 = 34$
$\therefore n = 35$
Substituting the value of $n$ in equation $\left( 1 \right)$ we get,
\[\dfrac{{\left[ {a + \dfrac{{\left( {35 - 1} \right)}}{2}d} \right]}}{{\left[ {{a^1} + \dfrac{{\left( {35 - 1} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5\left( {35} \right) + 4} \right)}}{{\left( {9\left( {35} \right) + 6} \right)}}\]
On simplifying, we get
\[\dfrac{{\left[ {a + \dfrac{{\left( {34} \right)}}{2}d} \right]}}{{\left[ {{a^1} + \dfrac{{\left( {34} \right)}}{2}{d^1}} \right]}} = \dfrac{{\left( {5\left( {35} \right) + 4} \right)}}{{\left( {9\left( {35} \right) + 6} \right)}}\]
Therefore, \[\dfrac{{\left[ {a + 17d} \right]}}{{\left[ {{a^1} + 17{d^1}} \right]}} = \dfrac{{\left( {5\left( {35} \right) + 4} \right)}}{{\left( {9\left( {35} \right) + 6} \right)}}\]
\[\dfrac{{\left[ {a + 17d} \right]}}{{\left[ {{a^1} + 17{d^1}} \right]}} = \dfrac{{\left( {175 + 4} \right)}}{{\left( {315 + 6} \right)}}\]
Hence, \[\dfrac{{{{18}^{th}}\text{term of first A.P}}}{{{{18}^{th}}\text{term of second A.p}}} = \dfrac{{179}}{{321}}\]
Therefore, the ratio of ${18^{th}}$ term of ${1^{st}}$ $A.P$ and ${18^{th}}$ term of ${2^{nd}}$ $A.P$ is $179:321$
Note: A progression is said to be a special type of sequence in which it is possible to obtain a formula for ${n^{th}}$ term. Arithmetic progression is the a sequence of number in which it will be having the difference of any two consecutive number will remain constant
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

