Answer
Verified
464.4k+ views
Hint: Hexagon is a polygon having six sides. Sum of its interior angles is ${720^ \circ }$. But the sum of exterior angles of any polygons is ${360^ \circ }$ irrespective of the number of sides in the polygon.
Complete step-by-step answer:
A hexagon is a polygon consisting of six sides. The total of the internal angles of a hexagon is ${720^ \circ }$.
If the hexagon is a regular hexagon, all the six sides of it are equal and all the six internal angles are also equal. And the measure of each angle is ${120^ \circ }$.
While the sum of interior angles of a polygon varies with the number of sides in a polygon, the sum of exterior angles remains the same for all polygons and it is ${360^ \circ }$.
In our case, if the hexagon is a regular hexagon, all the six exterior angles will be equal and each of them will measure ${60^ \circ }$. But if it is not regular, their values will differ. But the sum will always be the same which is ${360^ \circ }$.
Therefore, in the figure:
$ \Rightarrow a + b + c + d + e + f = {360^ \circ }$
(A) is the correct option.
Note: Sum of the interior angles of a polygon is determined by the formula $\left( {n - 2} \right) \times {180^ \circ }$ where $n$ is the number of sides in the polygon. And the sum of exterior angles is ${360^ \circ }$ irrespective of the number of sides in the polygon.
Complete step-by-step answer:
A hexagon is a polygon consisting of six sides. The total of the internal angles of a hexagon is ${720^ \circ }$.
If the hexagon is a regular hexagon, all the six sides of it are equal and all the six internal angles are also equal. And the measure of each angle is ${120^ \circ }$.
While the sum of interior angles of a polygon varies with the number of sides in a polygon, the sum of exterior angles remains the same for all polygons and it is ${360^ \circ }$.
In our case, if the hexagon is a regular hexagon, all the six exterior angles will be equal and each of them will measure ${60^ \circ }$. But if it is not regular, their values will differ. But the sum will always be the same which is ${360^ \circ }$.
Therefore, in the figure:
$ \Rightarrow a + b + c + d + e + f = {360^ \circ }$
(A) is the correct option.
Note: Sum of the interior angles of a polygon is determined by the formula $\left( {n - 2} \right) \times {180^ \circ }$ where $n$ is the number of sides in the polygon. And the sum of exterior angles is ${360^ \circ }$ irrespective of the number of sides in the polygon.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE