Answer
Verified
455.1k+ views
Hint: The first number that is multiple of 3 is 3. So, the first term of the progression is 3 and the total number of multiples of 3 is 5. So the number of terms of the progression is 5. The common difference is 3. Now, apply the formula ${a_n} = {a_1} + \left( {n - 1} \right)d$ to get the last term of the progression. Then find the sum of the progression by using the formula ${S_n} = \dfrac{n}{2}\left( {a + {a_n}} \right)$.
Formula used:
The general term of the arithmetic progression is given by,
${a_n} = a + \left( {n - 1} \right)d$
The sum of the progression is given by,
${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
where, ${a_n}$ is the last term.
${a_1}$ is the first term.
n is the number of terms.
d is a common difference.
${S_n}$ is the sum of the series.
Complete step-by-step answer:
Given:- First term, a= 3
Number of terms, n= 5
Common difference, d= 5
Now, find the last term of the series,
${a_5} = 3 + \left( {5 - 1} \right) \times 3$
Subtract 1 from 5 and multiply the result by 3,
${a_5} = 3 + 12$
Now add the terms of the right side,
${a_5} = 15$
Now use the summation formula to get the sum,
${S_5} = \dfrac{5}{2}\left( {3 + 15} \right)$
Add the terms in the brackets,
${S_5} = \dfrac{5}{2} \times 18$
Cancel out the common factors from both numerator and denominator and multiply the terms to get them,
${S_5} = 45$
Hence, the sum of the first five multiples of 3 is 45.
Note: This question can be done in another way also.
Let the sum of the first five multiples be S.
Then, the sum will be
$S = 3 + 6 + 9 + 12 + 15$
Take 3 common from the right side of the equation,
$S = 3\left( {1 + 2 + 3 + 4 + 5} \right)$
Now, apply the formula for the sum of n natural numbers ${S_n} = \dfrac{{n\left( {n + 1} \right)}}{2}$. Put $n = 5$,
$S = 3 \times \dfrac{{5\left( {5 + 1} \right)}}{3}$
Add the terms in the bracket,
$S = 3 \times \dfrac{{5 \times 6}}{2}$
Cancel out the common terms and multiply,
$S = 45$
Hence, the sum of the first five multiples of 3 is 45.
Formula used:
The general term of the arithmetic progression is given by,
${a_n} = a + \left( {n - 1} \right)d$
The sum of the progression is given by,
${S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]$
where, ${a_n}$ is the last term.
${a_1}$ is the first term.
n is the number of terms.
d is a common difference.
${S_n}$ is the sum of the series.
Complete step-by-step answer:
Given:- First term, a= 3
Number of terms, n= 5
Common difference, d= 5
Now, find the last term of the series,
${a_5} = 3 + \left( {5 - 1} \right) \times 3$
Subtract 1 from 5 and multiply the result by 3,
${a_5} = 3 + 12$
Now add the terms of the right side,
${a_5} = 15$
Now use the summation formula to get the sum,
${S_5} = \dfrac{5}{2}\left( {3 + 15} \right)$
Add the terms in the brackets,
${S_5} = \dfrac{5}{2} \times 18$
Cancel out the common factors from both numerator and denominator and multiply the terms to get them,
${S_5} = 45$
Hence, the sum of the first five multiples of 3 is 45.
Note: This question can be done in another way also.
Let the sum of the first five multiples be S.
Then, the sum will be
$S = 3 + 6 + 9 + 12 + 15$
Take 3 common from the right side of the equation,
$S = 3\left( {1 + 2 + 3 + 4 + 5} \right)$
Now, apply the formula for the sum of n natural numbers ${S_n} = \dfrac{{n\left( {n + 1} \right)}}{2}$. Put $n = 5$,
$S = 3 \times \dfrac{{5\left( {5 + 1} \right)}}{3}$
Add the terms in the bracket,
$S = 3 \times \dfrac{{5 \times 6}}{2}$
Cancel out the common terms and multiply,
$S = 45$
Hence, the sum of the first five multiples of 3 is 45.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE