Answer
Verified
496.8k+ views
Hint: Consider the 2 consecutive odd numbers as x and x+2. Find the sum of squares of these numbers.Find the value of x and you will get the two consecutive odd numbers.
“Complete step-by-step answer:”
The sum of the squares of 2 consecutive odd numbers is 394. Let us consider one odd number as x and the other consecutive odd number as (x + 2).
We know the odd numbers 1, 3, 5, 7……
So if one number is ‘x’ then the other consecutive odd number can be found by adding 2 to the \[{{1}^{st}}\]number.
So let us take 2 consecutive odd numbers as x and x + 2.
Now it is given that the sum of squares of these consecutive numbers x and (x + 2) is 394.
\[\therefore {{\left( x \right)}^{2}}+{{\left( x+2 \right)}^{2}}=394\]
We know, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].
Now open the brackets and simplify them,
\[\begin{align}
& {{x}^{2}}+{{x}^{2}}+2\times 2x+{{2}^{2}}=394 \\
& \Rightarrow 2{{x}^{2}}+4x+4=394 \\
\end{align}\]
Divide the entire equation by 2.
\[\begin{align}
& {{x}^{2}}+2x+2=197 \\
& {{x}^{2}}+2x=197-2 \\
& {{x}^{2}}+2x=195 \\
& {{x}^{2}}+2x-195=0-(1) \\
\end{align}\]
We got a quadratic equation which is similar to the general quadratic equation, \[a{{x}^{2}}+bx+c=0\].
By comparing equation (1) and the general equation, we get
a = 1, b = 2, c = -195.
Apply these values in the quadratic formula \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] and find the value of x.
\[\begin{align}
& \dfrac{-2\pm \sqrt{{{\left( 2 \right)}^{2}}-4\times 1\times \left( -195 \right)}}{2\times 1}=\dfrac{-2\pm \sqrt{4+780}}{2} \\
& =\dfrac{-2\pm \sqrt{784}}{2}=\dfrac{-2\pm \sqrt{28\times 28}}{2}=\dfrac{-2\pm 28}{2} \\
\end{align}\]
Hence the roots are \[\left( \dfrac{-2+28}{2} \right)\]and \[\left( \dfrac{-2-28}{2} \right)\]= 13 and -15.
\[\therefore \]Value of x = 13, which is an odd number.
Thus we got the \[{{1}^{st}}\]consecutive number as x =13.
Hence, \[{{2}^{nd}}\]consecutive number as x + 2 = 13 + 2 = 15
Thus the 2 consecutive odd numbers are 13 and 15.
Note: You should consider 2 consecutive terms as x and (x + 2), which is the key to solve this question. We know an odd number, for example 3 is an odd number. (3 + 2) gives 5, which is the odd number near to 3. Thus, 3 and 5 are consecutive terms.
“Complete step-by-step answer:”
The sum of the squares of 2 consecutive odd numbers is 394. Let us consider one odd number as x and the other consecutive odd number as (x + 2).
We know the odd numbers 1, 3, 5, 7……
So if one number is ‘x’ then the other consecutive odd number can be found by adding 2 to the \[{{1}^{st}}\]number.
So let us take 2 consecutive odd numbers as x and x + 2.
Now it is given that the sum of squares of these consecutive numbers x and (x + 2) is 394.
\[\therefore {{\left( x \right)}^{2}}+{{\left( x+2 \right)}^{2}}=394\]
We know, \[{{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\].
Now open the brackets and simplify them,
\[\begin{align}
& {{x}^{2}}+{{x}^{2}}+2\times 2x+{{2}^{2}}=394 \\
& \Rightarrow 2{{x}^{2}}+4x+4=394 \\
\end{align}\]
Divide the entire equation by 2.
\[\begin{align}
& {{x}^{2}}+2x+2=197 \\
& {{x}^{2}}+2x=197-2 \\
& {{x}^{2}}+2x=195 \\
& {{x}^{2}}+2x-195=0-(1) \\
\end{align}\]
We got a quadratic equation which is similar to the general quadratic equation, \[a{{x}^{2}}+bx+c=0\].
By comparing equation (1) and the general equation, we get
a = 1, b = 2, c = -195.
Apply these values in the quadratic formula \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] and find the value of x.
\[\begin{align}
& \dfrac{-2\pm \sqrt{{{\left( 2 \right)}^{2}}-4\times 1\times \left( -195 \right)}}{2\times 1}=\dfrac{-2\pm \sqrt{4+780}}{2} \\
& =\dfrac{-2\pm \sqrt{784}}{2}=\dfrac{-2\pm \sqrt{28\times 28}}{2}=\dfrac{-2\pm 28}{2} \\
\end{align}\]
Hence the roots are \[\left( \dfrac{-2+28}{2} \right)\]and \[\left( \dfrac{-2-28}{2} \right)\]= 13 and -15.
\[\therefore \]Value of x = 13, which is an odd number.
Thus we got the \[{{1}^{st}}\]consecutive number as x =13.
Hence, \[{{2}^{nd}}\]consecutive number as x + 2 = 13 + 2 = 15
Thus the 2 consecutive odd numbers are 13 and 15.
Note: You should consider 2 consecutive terms as x and (x + 2), which is the key to solve this question. We know an odd number, for example 3 is an odd number. (3 + 2) gives 5, which is the odd number near to 3. Thus, 3 and 5 are consecutive terms.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE