Answer
Verified
497.1k+ views
Hint: Let us assume the first number to be $x$ , the other number becomes $26-x$.
we can develop an equation using the data given in the question . Use both these equations to find the value of $x$.
Complete step-by-step answer:
Before proceeding we must be familiar with the terms, like the left-hand-side and the right-hand-side, how to solve linear equations, what are the rules to solve the equations when there are terms both on the left-hand-side and right-hand-side, what happens to the terms when we take it from right-hand-side to the left-hand-side.
In this question we have been given, the sum of the two numbers is 26. One of the numbers is 2 more than twice the other then we have to find out the numbers.
Let us assume the first number is $x$ .
Then the other number becomes $26-x$.
In question, it is given that one of the numbers is 2 more than twice the other.
The equation becomes, $x=2+2\left( 26-x \right)$.
Opening the brackets, we get,
$\therefore x=2+2\times 26-2x$
Now taking the variables on the left-hand side we get,
$\Rightarrow x+2x=2+52$
$\Rightarrow 3x=54$
$\Rightarrow x=\dfrac{54}{3}$
After cancelling we get,
$\therefore x=18$
Therefore, the first number is $18$.
The other number is given by $26-x=26-18$
Therefore, the other number is $8$. Hence, the required numbers are $18$ and $8$.
Note: We must be very careful about the sign when we are taking the terms from left-hand-side to right-hand-side and vice-versa. We can cross-check the answer by putting the value of the answer and verifying it with the question.
we can develop an equation using the data given in the question . Use both these equations to find the value of $x$.
Complete step-by-step answer:
Before proceeding we must be familiar with the terms, like the left-hand-side and the right-hand-side, how to solve linear equations, what are the rules to solve the equations when there are terms both on the left-hand-side and right-hand-side, what happens to the terms when we take it from right-hand-side to the left-hand-side.
In this question we have been given, the sum of the two numbers is 26. One of the numbers is 2 more than twice the other then we have to find out the numbers.
Let us assume the first number is $x$ .
Then the other number becomes $26-x$.
In question, it is given that one of the numbers is 2 more than twice the other.
The equation becomes, $x=2+2\left( 26-x \right)$.
Opening the brackets, we get,
$\therefore x=2+2\times 26-2x$
Now taking the variables on the left-hand side we get,
$\Rightarrow x+2x=2+52$
$\Rightarrow 3x=54$
$\Rightarrow x=\dfrac{54}{3}$
After cancelling we get,
$\therefore x=18$
Therefore, the first number is $18$.
The other number is given by $26-x=26-18$
Therefore, the other number is $8$. Hence, the required numbers are $18$ and $8$.
Note: We must be very careful about the sign when we are taking the terms from left-hand-side to right-hand-side and vice-versa. We can cross-check the answer by putting the value of the answer and verifying it with the question.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE