Answer
Verified
499.5k+ views
Hint: Assume the condition given with variables and proceed the simplification part in a proper manner.
Let us consider x and y are two required numbers.
Given sum of two numbers as 48
$ \Rightarrow x + y = 48 \to (1)$
And also given that product of two numbers as 432
$ \Rightarrow xy = 432 \to (2)$
From equation (2) we can write
$ \Rightarrow y = \dfrac{{432}}{x} \to (3)$
Now on substituting y value in equation (1) we get
$\
\Rightarrow x + \dfrac{{432}}{x} = 48 \\
\Rightarrow {x^2} + 432 = 48x \\
\Rightarrow {x^2} - 48x + 432 = 0 \\
\Rightarrow {x^2} - 36x - 12x + 432 = 0 \\
\Rightarrow x(x - 36) - 12(x - 36) = 0 \\
\Rightarrow (x - 36)(x - 12) = 0 \\
\Rightarrow x = 36,12 \\
\ $
Now to get y value let us substitute x value in equation (3)
If x=36, $y = \dfrac{{432}}{{36}} = 12$
If x=12, $y = \dfrac{{432}}{{12}} = 36$
Here if we put x=36 we get y=12 and if x=12 then y=36
Therefore we got both x, y values.
Note: Here we have considered two numbers as x and y and applied the given conditions. Later we have substituted x value in one condition to get y value (we can substitute if any of required condition) And on further simplification we get x, y values. Concentrate on factorization of the equation to get proper values.
Let us consider x and y are two required numbers.
Given sum of two numbers as 48
$ \Rightarrow x + y = 48 \to (1)$
And also given that product of two numbers as 432
$ \Rightarrow xy = 432 \to (2)$
From equation (2) we can write
$ \Rightarrow y = \dfrac{{432}}{x} \to (3)$
Now on substituting y value in equation (1) we get
$\
\Rightarrow x + \dfrac{{432}}{x} = 48 \\
\Rightarrow {x^2} + 432 = 48x \\
\Rightarrow {x^2} - 48x + 432 = 0 \\
\Rightarrow {x^2} - 36x - 12x + 432 = 0 \\
\Rightarrow x(x - 36) - 12(x - 36) = 0 \\
\Rightarrow (x - 36)(x - 12) = 0 \\
\Rightarrow x = 36,12 \\
\ $
Now to get y value let us substitute x value in equation (3)
If x=36, $y = \dfrac{{432}}{{36}} = 12$
If x=12, $y = \dfrac{{432}}{{12}} = 36$
Here if we put x=36 we get y=12 and if x=12 then y=36
Therefore we got both x, y values.
Note: Here we have considered two numbers as x and y and applied the given conditions. Later we have substituted x value in one condition to get y value (we can substitute if any of required condition) And on further simplification we get x, y values. Concentrate on factorization of the equation to get proper values.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Discuss the main reasons for poverty in India
Write a letter to the principal requesting him to grant class 10 english CBSE