
The sum of two numbers is 8 and 15 times the sum of their reciprocals is also 8. Find the numbers.
Answer
624k+ views
Hint: - Use the formula ${\left( {x - y} \right)^2} = {\left( {x + y} \right)^2} - 4xy$
Let the numbers be $x$ and $y$.
According to the question , the sum of two numbers is 8.
$ \Rightarrow x + y = 8...............\left( 1 \right)$
Reciprocals of the numbers be$\dfrac{1}{x}$and $\dfrac{1}{y}$
According to question 15 times the sum of reciprocals is also 8
$ \Rightarrow 15\left( {\dfrac{1}{x} + \dfrac{1}{y}} \right) = 8$
$ \Rightarrow 15\left( {\dfrac{{x + y}}{{xy}}} \right) = 8$
From equation 1
$
\Rightarrow 15\left( {\dfrac{8}{{xy}}} \right) = 8 \\
\Rightarrow xy = 15.........\left( 2 \right) \\
$
Now it is known fact that ${\left( {x - y} \right)^2} = {\left( {x + y} \right)^2} - 4xy$
Now from equation (1) and (2)
$
{\left( {x - y} \right)^2} = {8^2} - 4 \times 15 = 64 - 60 = 4 = {2^2} \\
\Rightarrow x - y = 2...........\left( 3 \right) \\
$
Now add equation (1) and (3)
$
\Rightarrow x + y + x - y = 8 + 2 \\
\Rightarrow 2x = 10 \\
\Rightarrow x = 5 \\
$
From equation 1
$
\Rightarrow x + y = 8 \\
\Rightarrow 5 + y = 8 \\
\Rightarrow y = 3 \\
$
So, the required numbers are 5 and 3.
Note: - Whenever we face such types of problems the key concept we have to remember is that always remember the formula ${\left( {x - y} \right)^2} = {\left( {x + y} \right)^2} - 4xy$. It will give us a simple approach to solve this kind of problem, then simplify we will get the required answer.
Let the numbers be $x$ and $y$.
According to the question , the sum of two numbers is 8.
$ \Rightarrow x + y = 8...............\left( 1 \right)$
Reciprocals of the numbers be$\dfrac{1}{x}$and $\dfrac{1}{y}$
According to question 15 times the sum of reciprocals is also 8
$ \Rightarrow 15\left( {\dfrac{1}{x} + \dfrac{1}{y}} \right) = 8$
$ \Rightarrow 15\left( {\dfrac{{x + y}}{{xy}}} \right) = 8$
From equation 1
$
\Rightarrow 15\left( {\dfrac{8}{{xy}}} \right) = 8 \\
\Rightarrow xy = 15.........\left( 2 \right) \\
$
Now it is known fact that ${\left( {x - y} \right)^2} = {\left( {x + y} \right)^2} - 4xy$
Now from equation (1) and (2)
$
{\left( {x - y} \right)^2} = {8^2} - 4 \times 15 = 64 - 60 = 4 = {2^2} \\
\Rightarrow x - y = 2...........\left( 3 \right) \\
$
Now add equation (1) and (3)
$
\Rightarrow x + y + x - y = 8 + 2 \\
\Rightarrow 2x = 10 \\
\Rightarrow x = 5 \\
$
From equation 1
$
\Rightarrow x + y = 8 \\
\Rightarrow 5 + y = 8 \\
\Rightarrow y = 3 \\
$
So, the required numbers are 5 and 3.
Note: - Whenever we face such types of problems the key concept we have to remember is that always remember the formula ${\left( {x - y} \right)^2} = {\left( {x + y} \right)^2} - 4xy$. It will give us a simple approach to solve this kind of problem, then simplify we will get the required answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

