
The sum to infinity of the series
\[1 + 2{\text{/}}3 + 6{\text{/}}{3^2} + 10{\text{/}}{3^3} + 14{\text{/}}{3^4} + ...\;{\text{is}}{\text{.}}\]
Answer
592.8k+ views
Hint: Here, we will use the concept of sum of the infinite series of geometry progression i.e. GP. The sum of infinite series of a GP is possible only under certain conditions, otherwise the series will diverge and the sum will be infinity.
Complete step by step solution: Let the given Equation be S.
\[{\text{S}} = 1 + 2{\text{/}}3 + 6{\text{/}}{3^2} + 10{\text{/}}{3^2} + 14{\text{/}}{3^2} + ...\;({\text{i)}}\]
First we need to check whether it is an AP series or GP. Series.
Looking at the pattern of the series, the numerator is AP. With a common difference of 4 and denominator is in GP. With a common ratio 3.
To make it a perfect, we divide equation (i) on both sides by 3.
\[\begin{gathered}
\dfrac{{\text{S}}}{3} = \dfrac{{\left( {1 + 2{\text{/}}3 + 6{\text{/}}{3^2} + 10{\text{/}}{3^3} + 14{\text{/}}{3^4} + ...\;\infty } \right)}}{3} \\
\\
\dfrac{{\text{S}}}{3} = \dfrac{1}{3} + 2{\text{/}}{3^2} + 6{\text{/}}{3^3} + 10{\text{/}}{3^4} + 14{\text{/}}{3^5} + ...\;\infty \;\;\;\;\;({\text{ii}}) \\
\end{gathered} \]
For getting the perfect pattern out of these equations.
We subtract eq. (ii) from eq. (i).
\[\begin{gathered}
{\text{S}} - {\text{S/}}3 = \left( {1 + 2{\text{/}}3 + 6{\text{/}}{3^2} + 10{\text{/}}{3^3} + 14{\text{/}}{3^4} + ...\;\infty } \right) \\
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {1{\text{/}}3 + 2{\text{/}}{3^2} + 6{\text{/}}{3^3} + 10{\text{/}}{3^4} + ...\;\infty } \right) \\
\\
= \dfrac{{25}}{3} = 1 + \left( {2{\text{/3}} - 1{\text{/3}}} \right) + \left( {6{\text{/}}{{\text{3}}^2} - 2{\text{/}}{{\text{3}}^2}} \right) + \left( {10{\text{/}}{{\text{3}}^3} - 6{\text{/}}{{\text{3}}^3}} \right) + ...\;\infty \\
= \dfrac{{25}}{3} = 1 + \dfrac{1}{3} + 4{\text{/}}{3^2} + 4{\text{/}}{3^3} + 4{\text{/}}{3^4} + ...\;\infty \\
{\text{S}} = \dfrac{3}{2}1 + 1{\text{/}}3 + 4{\text{/}}{3^2} + 4{\text{/}}{3^2} + 4{\text{/}}{3^4} + ...\;\infty \\
= {\text{S}} = \dfrac{{3 + 1}}{2} + \dfrac{2}{3} + \dfrac{2}{{{3^2}}} + \dfrac{2}{{{3^3}}} + \dfrac{2}{{{3^4}}} + ...\;\infty \\
= {\text{S}} = 2 + 2{\text{/}}3 + 2{\text{/}}{3^2} + 2{\text{/}}{3^3} + 2{\text{/}}{3^4} + ...\;\infty \\
= {\text{S}} = 2{\text{/}}{3^0} + 2{\text{/}}{3^1} + 2{\text{/}}{3^2} + 2{\text{/}}{3^3} + 2{\text{/}}{3^4}...\;\infty \;\;\;\;({\text{iii}}) \\
\end{gathered} \]
The above equation i.e. eq. (iii) is in the GP. Of infinite terms
here the common ratio of the equation is
\[ = \dfrac{{2{\text{/}}{{\text{3}}^1}}}{{2{\text{/}}{{\text{3}}^0}}} = \dfrac{{2{\text{/3}}}}{{2{\text{/1}}}} = \dfrac{2}{3} \times \dfrac{1}{2} = \dfrac{1}{3}\]
\[\therefore \]common ratio =\[\dfrac{1}{3}\];
(because in a GP. a, ar, ar2. Common ratio = \[\dfrac{{ar}}{a} = r\])
Now, sum of the infinite series is GP is
\[{\text{S}}\infty = \dfrac{a}{{a - r}}\;;\] where O< r < l and
a id the first term of the GP and r this common ratio of an infinite GP.
So, \[{\text{S}} = \dfrac{2}{{1 - 1{\text{/}}3}}\;\]
$\Rightarrow \text{S}=\dfrac{2}{\dfrac{2}{3}}$
$\Rightarrow \text{S}={2}\times \dfrac{3}{2}$
$\Rightarrow \text{S}=3$
Sum of the infinite series is 3.
Note: In this type of question, we will check for AP and GP them accordingly to solve the equation and numbers the sum formula for infinite series that is very important. In higher studies we’ll come across many infinite series. Some of them will be convergent means sum will be finite and some of them will be divergent means sum will be infinite. The famous example is $\dfrac{1}{{x}^{\text{p}}}$. this series is convergent for $\text{p}>1$ and convergent for $\text{p}<1$.
Complete step by step solution: Let the given Equation be S.
\[{\text{S}} = 1 + 2{\text{/}}3 + 6{\text{/}}{3^2} + 10{\text{/}}{3^2} + 14{\text{/}}{3^2} + ...\;({\text{i)}}\]
First we need to check whether it is an AP series or GP. Series.
Looking at the pattern of the series, the numerator is AP. With a common difference of 4 and denominator is in GP. With a common ratio 3.
To make it a perfect, we divide equation (i) on both sides by 3.
\[\begin{gathered}
\dfrac{{\text{S}}}{3} = \dfrac{{\left( {1 + 2{\text{/}}3 + 6{\text{/}}{3^2} + 10{\text{/}}{3^3} + 14{\text{/}}{3^4} + ...\;\infty } \right)}}{3} \\
\\
\dfrac{{\text{S}}}{3} = \dfrac{1}{3} + 2{\text{/}}{3^2} + 6{\text{/}}{3^3} + 10{\text{/}}{3^4} + 14{\text{/}}{3^5} + ...\;\infty \;\;\;\;\;({\text{ii}}) \\
\end{gathered} \]
For getting the perfect pattern out of these equations.
We subtract eq. (ii) from eq. (i).
\[\begin{gathered}
{\text{S}} - {\text{S/}}3 = \left( {1 + 2{\text{/}}3 + 6{\text{/}}{3^2} + 10{\text{/}}{3^3} + 14{\text{/}}{3^4} + ...\;\infty } \right) \\
\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {1{\text{/}}3 + 2{\text{/}}{3^2} + 6{\text{/}}{3^3} + 10{\text{/}}{3^4} + ...\;\infty } \right) \\
\\
= \dfrac{{25}}{3} = 1 + \left( {2{\text{/3}} - 1{\text{/3}}} \right) + \left( {6{\text{/}}{{\text{3}}^2} - 2{\text{/}}{{\text{3}}^2}} \right) + \left( {10{\text{/}}{{\text{3}}^3} - 6{\text{/}}{{\text{3}}^3}} \right) + ...\;\infty \\
= \dfrac{{25}}{3} = 1 + \dfrac{1}{3} + 4{\text{/}}{3^2} + 4{\text{/}}{3^3} + 4{\text{/}}{3^4} + ...\;\infty \\
{\text{S}} = \dfrac{3}{2}1 + 1{\text{/}}3 + 4{\text{/}}{3^2} + 4{\text{/}}{3^2} + 4{\text{/}}{3^4} + ...\;\infty \\
= {\text{S}} = \dfrac{{3 + 1}}{2} + \dfrac{2}{3} + \dfrac{2}{{{3^2}}} + \dfrac{2}{{{3^3}}} + \dfrac{2}{{{3^4}}} + ...\;\infty \\
= {\text{S}} = 2 + 2{\text{/}}3 + 2{\text{/}}{3^2} + 2{\text{/}}{3^3} + 2{\text{/}}{3^4} + ...\;\infty \\
= {\text{S}} = 2{\text{/}}{3^0} + 2{\text{/}}{3^1} + 2{\text{/}}{3^2} + 2{\text{/}}{3^3} + 2{\text{/}}{3^4}...\;\infty \;\;\;\;({\text{iii}}) \\
\end{gathered} \]
The above equation i.e. eq. (iii) is in the GP. Of infinite terms
here the common ratio of the equation is
\[ = \dfrac{{2{\text{/}}{{\text{3}}^1}}}{{2{\text{/}}{{\text{3}}^0}}} = \dfrac{{2{\text{/3}}}}{{2{\text{/1}}}} = \dfrac{2}{3} \times \dfrac{1}{2} = \dfrac{1}{3}\]
\[\therefore \]common ratio =\[\dfrac{1}{3}\];
(because in a GP. a, ar, ar2. Common ratio = \[\dfrac{{ar}}{a} = r\])
Now, sum of the infinite series is GP is
\[{\text{S}}\infty = \dfrac{a}{{a - r}}\;;\] where O< r < l and
a id the first term of the GP and r this common ratio of an infinite GP.
So, \[{\text{S}} = \dfrac{2}{{1 - 1{\text{/}}3}}\;\]
$\Rightarrow \text{S}=\dfrac{2}{\dfrac{2}{3}}$
$\Rightarrow \text{S}={2}\times \dfrac{3}{2}$
$\Rightarrow \text{S}=3$
Sum of the infinite series is 3.
Note: In this type of question, we will check for AP and GP them accordingly to solve the equation and numbers the sum formula for infinite series that is very important. In higher studies we’ll come across many infinite series. Some of them will be convergent means sum will be finite and some of them will be divergent means sum will be infinite. The famous example is $\dfrac{1}{{x}^{\text{p}}}$. this series is convergent for $\text{p}>1$ and convergent for $\text{p}<1$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

