Answer
Verified
498.9k+ views
Hint: Here, we will be proceeding by simply using all the four logic symbols mentioned in the options with the two statement variables p and q given in the problem to see which one of these symbolic forms gives the same statement as given in the problem.
Complete step-by-step answer:
The statement is “I am topper and I worked hard”. This statement needs to be represented in the symbolic form using two different statement variables p and q with the help of some logic symbol.
Given, p: I am topper and q: I worked hard.
If we see the options, four different logic symbols are used. Let us observe these one by one.
First logic symbol between p and q is $ \leftrightarrow $ which stands for equivalence. As we know that if there are two statement variables A and B then ${\text{A}} \leftrightarrow {\text{B}}$ means “A if and only if B” . This is the symbolic form.
So, symbolic form \[{\text{p}} \leftrightarrow {\text{q}}\] means “I am topper if and only if I worked hard” which is not the same as the given statement.
Second logic symbol between p and q is $ \vee $ which stands for disjunction. As we know that if there are two statement variables A and B then ${\text{A}} \vee {\text{B}}$ means “A or B” . This is the symbolic form.
So, symbolic form \[{\text{p}} \vee {\text{q}}\] means “I am topper or I worked hard” which is not the same as the given statement.
Third logic symbol between p and q is $ \wedge $ which stands for conjunction. As we know that if there are two statement variables A and B then ${\text{A}} \wedge {\text{B}}$ means “A and B” . This is the symbolic form.
So, the symbolic form \[{\text{p}} \wedge {\text{q}}\] means “I am topper and I worked hard” which is the same as the given statement.
Fourth logic symbol between p and q is $ \to $ which stands for implication. As we know that if there are two statement variables A and B then ${\text{A}} \to {\text{B}}$ means “If A then B” . This is the symbolic form.
So, the symbolic form \[{\text{p}} \to {\text{q}}\] means “If I am topper then I worked hard” which is not the same as the given statement.
Clearly, the symbolic form of the statement: “I am topper and I worked hard” is \[{\text{p}} \wedge {\text{q}}\] where two statement variables are p as “I am topper” and q as “I worked hard”.
Hence, option C is correct.
Note: In these types of problems, we represent all the given symbolic forms in the options into statements which will be formed with the help of statement variables p and q given in the problem. Here, there is no need for truth tables because we have to just understand the symbolic form of various logic symbols.
Complete step-by-step answer:
The statement is “I am topper and I worked hard”. This statement needs to be represented in the symbolic form using two different statement variables p and q with the help of some logic symbol.
Given, p: I am topper and q: I worked hard.
If we see the options, four different logic symbols are used. Let us observe these one by one.
First logic symbol between p and q is $ \leftrightarrow $ which stands for equivalence. As we know that if there are two statement variables A and B then ${\text{A}} \leftrightarrow {\text{B}}$ means “A if and only if B” . This is the symbolic form.
So, symbolic form \[{\text{p}} \leftrightarrow {\text{q}}\] means “I am topper if and only if I worked hard” which is not the same as the given statement.
Second logic symbol between p and q is $ \vee $ which stands for disjunction. As we know that if there are two statement variables A and B then ${\text{A}} \vee {\text{B}}$ means “A or B” . This is the symbolic form.
So, symbolic form \[{\text{p}} \vee {\text{q}}\] means “I am topper or I worked hard” which is not the same as the given statement.
Third logic symbol between p and q is $ \wedge $ which stands for conjunction. As we know that if there are two statement variables A and B then ${\text{A}} \wedge {\text{B}}$ means “A and B” . This is the symbolic form.
So, the symbolic form \[{\text{p}} \wedge {\text{q}}\] means “I am topper and I worked hard” which is the same as the given statement.
Fourth logic symbol between p and q is $ \to $ which stands for implication. As we know that if there are two statement variables A and B then ${\text{A}} \to {\text{B}}$ means “If A then B” . This is the symbolic form.
So, the symbolic form \[{\text{p}} \to {\text{q}}\] means “If I am topper then I worked hard” which is not the same as the given statement.
Clearly, the symbolic form of the statement: “I am topper and I worked hard” is \[{\text{p}} \wedge {\text{q}}\] where two statement variables are p as “I am topper” and q as “I worked hard”.
Hence, option C is correct.
Note: In these types of problems, we represent all the given symbolic forms in the options into statements which will be formed with the help of statement variables p and q given in the problem. Here, there is no need for truth tables because we have to just understand the symbolic form of various logic symbols.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE