Answer
Verified
459.3k+ views
Hint:-
In order to solve the problem we are using the principle of conservation of energy that is ( Energy can neither be created nor be destroyed but it can be transformed from one form to another ) . Based on this principle the electrical energy is used to deliver the heat to the room because refrigerator is the device in which the inside temperature is less than the temperature of the room in which it is kept, so the equation becomes \[{Q_{Supplied}} = {Q_{REJ}} + W\] & we want the value of amount of heat delivered to the room for each joule of electrical energy consumed ideally ,that means we want the value of \[\dfrac{{{Q_{Supplied}}}}{W}\]. On simplifying the relation we get \[\dfrac{{{Q_{Supplied}}}}{W} = \dfrac{{{Q_{REJ}}}}{W} + 1\].
Formula used:-
\[{Q_{Supplied}} = {Q_{REJ}} + W\]; where
\[{Q_{Supplied}}\]= heat energy supplied by the electrical means.
\[{Q_{REJ}}\]= heat rejected by the refrigerator.
\[W\]= Work done
Complete step-by-step solution:
Since the coefficient of performance of the refrigerator is ratio of heat rejected and work done
Coefficient of performance (\[COP\])
\[ \Rightarrow COP = \dfrac{{{Q_{REJ}}}}{W}\]
\[ \Rightarrow \dfrac{{{Q_{REJ}}}}{W} = \dfrac{{{t_2} + 273}}{{{t_1} - {t_2}}}\]
Since the room is at a higher temperature than the refrigerator , it will act as a hot reservoir .
The electric energy is the input energy or the energy supplied to do the work (\[W\])
\[{Q_{Supplied}} = {Q_{REJ}} + W\]
amount of heat delivered to the room for each joule of electrical energy is
\[ \Rightarrow \dfrac{{{Q_{Supplied}}}}{W} = \dfrac{{{Q_{REJ}}}}{W} + 1\]
Putting the value of \[\dfrac{{{Q_{REJ}}}}{W}\]in the equation
\[ \Rightarrow \dfrac{{{Q_{Supplied}}}}{W} = \dfrac{{{t_2} + 273}}{{{t_1} - {t_2}}} + 1\] since \[ \Rightarrow \dfrac{{{Q_{REJ}}}}{W} = \dfrac{{{t_2} + 273}}{{{t_1} - {t_2}}}\]
Further solving the equation.
\[ \Rightarrow \dfrac{{{Q_{Supplied}}}}{W} = \dfrac{{{t_1} + 273}}{{{t_1} - {t_2}}}\]
Hence option (D) is the correct answer.
The amount of heat delivered to the room for each joule of electrical energy consumed ideally will be\[\dfrac{{{t_1} + 273}}{{{t_1} - {t_2}}}\].
Note:-
In physical significance of the coefficient of performance (\[COP\]) we mean that we take the input depending upon the output which we desired , while in physical significance of efficiency the output depends on the input which we have supplied .
When we kept open the door of the refrigerator in the kitchen the overall temperature of the kitchen rises.
In order to solve the problem we are using the principle of conservation of energy that is ( Energy can neither be created nor be destroyed but it can be transformed from one form to another ) . Based on this principle the electrical energy is used to deliver the heat to the room because refrigerator is the device in which the inside temperature is less than the temperature of the room in which it is kept, so the equation becomes \[{Q_{Supplied}} = {Q_{REJ}} + W\] & we want the value of amount of heat delivered to the room for each joule of electrical energy consumed ideally ,that means we want the value of \[\dfrac{{{Q_{Supplied}}}}{W}\]. On simplifying the relation we get \[\dfrac{{{Q_{Supplied}}}}{W} = \dfrac{{{Q_{REJ}}}}{W} + 1\].
Formula used:-
\[{Q_{Supplied}} = {Q_{REJ}} + W\]; where
\[{Q_{Supplied}}\]= heat energy supplied by the electrical means.
\[{Q_{REJ}}\]= heat rejected by the refrigerator.
\[W\]= Work done
Complete step-by-step solution:
Since the coefficient of performance of the refrigerator is ratio of heat rejected and work done
Coefficient of performance (\[COP\])
\[ \Rightarrow COP = \dfrac{{{Q_{REJ}}}}{W}\]
\[ \Rightarrow \dfrac{{{Q_{REJ}}}}{W} = \dfrac{{{t_2} + 273}}{{{t_1} - {t_2}}}\]
Since the room is at a higher temperature than the refrigerator , it will act as a hot reservoir .
The electric energy is the input energy or the energy supplied to do the work (\[W\])
\[{Q_{Supplied}} = {Q_{REJ}} + W\]
amount of heat delivered to the room for each joule of electrical energy is
\[ \Rightarrow \dfrac{{{Q_{Supplied}}}}{W} = \dfrac{{{Q_{REJ}}}}{W} + 1\]
Putting the value of \[\dfrac{{{Q_{REJ}}}}{W}\]in the equation
\[ \Rightarrow \dfrac{{{Q_{Supplied}}}}{W} = \dfrac{{{t_2} + 273}}{{{t_1} - {t_2}}} + 1\] since \[ \Rightarrow \dfrac{{{Q_{REJ}}}}{W} = \dfrac{{{t_2} + 273}}{{{t_1} - {t_2}}}\]
Further solving the equation.
\[ \Rightarrow \dfrac{{{Q_{Supplied}}}}{W} = \dfrac{{{t_1} + 273}}{{{t_1} - {t_2}}}\]
Hence option (D) is the correct answer.
The amount of heat delivered to the room for each joule of electrical energy consumed ideally will be\[\dfrac{{{t_1} + 273}}{{{t_1} - {t_2}}}\].
Note:-
In physical significance of the coefficient of performance (\[COP\]) we mean that we take the input depending upon the output which we desired , while in physical significance of efficiency the output depends on the input which we have supplied .
When we kept open the door of the refrigerator in the kitchen the overall temperature of the kitchen rises.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE