Answer
Verified
444.6k+ views
Hint: Threshold frequency is the minimum frequency required for photoelectric emission. The formula of photon energy is $E = hv$. By putting the values in this formula we get our required answer.
Complete step by step answer:
Threshold frequency is defined as the minimum frequency of incident radiation below which the photoelectric emission is not possible completely irrespective of the intensity of incident radiation. The solution is calculated as follows:
Energy required for photoelectric emission = $hv$
Here, $v$ is the threshold frequency and $h$ is the Plank’s Constant with value $6.6 \times {10^{ - 34}}Js$ . Now, we are given with value of $v$ which is,
$v = 1.3 \times {10^{15}}/\sec $
Now, finding the energy required for emission we will multiply frequency with the Plank’s constant.
$ \Rightarrow 6.6 \times {10^{ - 34}} \times 1.3 \times {10^{15}}$
$ \Rightarrow 8.58 \times {10^{ - 19}}J$
Now, we got threshold energy as $8.58 \times {10^{ - 19}}J$ .
Now, according to the options, the first option is correct as electron ejection depends on the intensity of threshold energy. The second option is incorrect as $1 \times {10^{ - 20}}J$ will not be able to eject electrons as the energy is less than the threshold energy. The third option is correct as the value in the option is less than threshold value and therefore electrons will not eject. According to the fourth option kinetic energy will increase with frequency which is also true as energy is directly proportional to frequency.
Therefore, the data in option A, C and D are correct and data in option B is incorrect. Thus the correct answer is option B.
Additional Information: The photoelectric effect is the emission of electrons when electromagnetic radiation such as light hits a material. Electrons emitted in this manner are called photoelectrons. It is used in electronic devices specialized for light detection and precisely timed electron emission. In classical electromagnetic theory, the photoelectric effect was attributed to the transfer of energy from the continuous light waves to an electron.
Note: Threshold energy is an important part of particle physics. It is the minimum kinetic energy required when a pair of travelling particles must have when they collide. It is always greater than or equal to rest energy of the desired particle.
Complete step by step answer:
Threshold frequency is defined as the minimum frequency of incident radiation below which the photoelectric emission is not possible completely irrespective of the intensity of incident radiation. The solution is calculated as follows:
Energy required for photoelectric emission = $hv$
Here, $v$ is the threshold frequency and $h$ is the Plank’s Constant with value $6.6 \times {10^{ - 34}}Js$ . Now, we are given with value of $v$ which is,
$v = 1.3 \times {10^{15}}/\sec $
Now, finding the energy required for emission we will multiply frequency with the Plank’s constant.
$ \Rightarrow 6.6 \times {10^{ - 34}} \times 1.3 \times {10^{15}}$
$ \Rightarrow 8.58 \times {10^{ - 19}}J$
Now, we got threshold energy as $8.58 \times {10^{ - 19}}J$ .
Now, according to the options, the first option is correct as electron ejection depends on the intensity of threshold energy. The second option is incorrect as $1 \times {10^{ - 20}}J$ will not be able to eject electrons as the energy is less than the threshold energy. The third option is correct as the value in the option is less than threshold value and therefore electrons will not eject. According to the fourth option kinetic energy will increase with frequency which is also true as energy is directly proportional to frequency.
Therefore, the data in option A, C and D are correct and data in option B is incorrect. Thus the correct answer is option B.
Additional Information: The photoelectric effect is the emission of electrons when electromagnetic radiation such as light hits a material. Electrons emitted in this manner are called photoelectrons. It is used in electronic devices specialized for light detection and precisely timed electron emission. In classical electromagnetic theory, the photoelectric effect was attributed to the transfer of energy from the continuous light waves to an electron.
Note: Threshold energy is an important part of particle physics. It is the minimum kinetic energy required when a pair of travelling particles must have when they collide. It is always greater than or equal to rest energy of the desired particle.
Recently Updated Pages
There are two sample of HCI having molarity 1M and class 11 chemistry JEE_Main
For the reaction I + ClO3 + H2SO4 to Cl + HSO4 + I2 class 11 chemistry JEE_Main
What happens to the gravitational force between two class 11 physics NEET
In the reaction 2NH4 + + 6NO3 aq + 4H + aq to 6NO2g class 11 chemistry JEE_Main
A weightless rod is acted upon by upward parallel forces class 11 phy sec 1 JEE_Main
From a uniform circular disc of radius R and mass 9 class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE