Answer
Verified
443.4k+ views
Hint:To find the dimensions and units of more complex quantities, we use the principle of dimensional homogeneity. It is necessary to remember the dimensional formula of some of the basic physical quantities such as Force, Area, Volume, Pressure, Torque, Work, Power and many more.
Formula used:
[Dimensional formulas of the following Quantities are given below
$\left[ F \right] = \left[ {{M^0}{L^2}{T^{ - 1}}} \right]$
$\left[ A \right] = \left[ {{M^0}{L^2}{T^0}} \right]$
$\left[ {{P_1} - {P_2}} \right] = \left[ {{M^1}{L^{ - 1}}{T^{ - 2}}} \right]$
$\left[ v \right] = \left[ {{M^0}{L^1}{T^{ - 1}}} \right]$
Here $F$ is the force, $A$ is the area of cross section, ${P_1}$ and ${P_2}$ are the pressures, $v$ is the velocity of the gas, $M$ is the dimensional formulae used for mass, $L$ is the dimensional formulae used for length and $T$ is the dimensional formulae used for time.
Complete step by step solution:
Using the principle of homogeneity, i.e.
dimensional formulae on the right side is equal to the dimensional formulae on the left side, we can further say,
$L.H.S = \left[ F \right]$ and
$R.H.S = \left[ m \right]\left[ v \right] + \left[ A \right]\left[ {{P_1} - {P_2}} \right]$
We know that the dimensional formula of $F$ is,
$\left[ F \right] = \left[ {{M^0}{L^2}{T^{ - 1}}} \right]$
Similarly,
$R.H.S = \left[ m \right]\left[ v \right] + \left[ A \right]\left[ {{P_1} - {P_2}} \right]$
Let this be equation 1
Substituting the values of
$\left[ m \right] = \left[ M \right]$
$\left[ v \right] = \left[ {{M^0}{L^1}{T^{ - 1}}} \right]$
$\left[ A \right] = \left[ {{M^0}{L^2}{T^0}} \right]$
$\left[ {{P_1} - {P_2}} \right] = \left[ {{M^1}{L^{ - 1}}{T^{ - 2}}} \right]$ in equation 1 , we get,
$ \Rightarrow R.H.S = \left[ M \right]\left[ {{M^0}{L^1}{T^{ - 1}}} \right] + \left[ {{M^0}{L^2}{T^0}} \right]\left[ {{M^1}{L^{ - 1}}{T^{ - 2}}} \right]$
$ \Rightarrow R.H.S = \left[ {{M^0}{L^2}{T^{ - 1}}} \right]$
Hence, $L.H.S = R.H.S$
So, the option (A) is correct.
Additional Information:
Dimensional analysis is very useful. It’s mostly used for;
-Convert units from one system to another system.
-Check the accuracy of an equation.
-establish an equation or formula
-obtain unit
We use three base quantities i.e. time, mass, length and electric charge to form any physical quantity.
Note:This question can be solved by the principle of homogeneity which states that in any dimensional equation each term of both sides contain equal dimension. This principle is known as the Principle of Homogeneity. . It helps to eliminate options when solving multiple choice questions.
Formula used:
[Dimensional formulas of the following Quantities are given below
$\left[ F \right] = \left[ {{M^0}{L^2}{T^{ - 1}}} \right]$
$\left[ A \right] = \left[ {{M^0}{L^2}{T^0}} \right]$
$\left[ {{P_1} - {P_2}} \right] = \left[ {{M^1}{L^{ - 1}}{T^{ - 2}}} \right]$
$\left[ v \right] = \left[ {{M^0}{L^1}{T^{ - 1}}} \right]$
Here $F$ is the force, $A$ is the area of cross section, ${P_1}$ and ${P_2}$ are the pressures, $v$ is the velocity of the gas, $M$ is the dimensional formulae used for mass, $L$ is the dimensional formulae used for length and $T$ is the dimensional formulae used for time.
Complete step by step solution:
Using the principle of homogeneity, i.e.
dimensional formulae on the right side is equal to the dimensional formulae on the left side, we can further say,
$L.H.S = \left[ F \right]$ and
$R.H.S = \left[ m \right]\left[ v \right] + \left[ A \right]\left[ {{P_1} - {P_2}} \right]$
We know that the dimensional formula of $F$ is,
$\left[ F \right] = \left[ {{M^0}{L^2}{T^{ - 1}}} \right]$
Similarly,
$R.H.S = \left[ m \right]\left[ v \right] + \left[ A \right]\left[ {{P_1} - {P_2}} \right]$
Let this be equation 1
Substituting the values of
$\left[ m \right] = \left[ M \right]$
$\left[ v \right] = \left[ {{M^0}{L^1}{T^{ - 1}}} \right]$
$\left[ A \right] = \left[ {{M^0}{L^2}{T^0}} \right]$
$\left[ {{P_1} - {P_2}} \right] = \left[ {{M^1}{L^{ - 1}}{T^{ - 2}}} \right]$ in equation 1 , we get,
$ \Rightarrow R.H.S = \left[ M \right]\left[ {{M^0}{L^1}{T^{ - 1}}} \right] + \left[ {{M^0}{L^2}{T^0}} \right]\left[ {{M^1}{L^{ - 1}}{T^{ - 2}}} \right]$
$ \Rightarrow R.H.S = \left[ {{M^0}{L^2}{T^{ - 1}}} \right]$
Hence, $L.H.S = R.H.S$
So, the option (A) is correct.
Additional Information:
Dimensional analysis is very useful. It’s mostly used for;
-Convert units from one system to another system.
-Check the accuracy of an equation.
-establish an equation or formula
-obtain unit
We use three base quantities i.e. time, mass, length and electric charge to form any physical quantity.
Note:This question can be solved by the principle of homogeneity which states that in any dimensional equation each term of both sides contain equal dimension. This principle is known as the Principle of Homogeneity. . It helps to eliminate options when solving multiple choice questions.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE