Answer
Verified
465.6k+ views
Hint: First understand the concept of torsional rigidity and shafts by defining them. Then find out about the torque. Then develop a relation between torsional rigidity, shafts, and torque and, you will reach the correct answer.
Complete step by step answer:
Shafts are a type of mechanical component having a circular cross-section. They rotate and through this motion they emit power or in other words, we can say torque.
Torque is the force required for rotation.
Torsional rigidity is the minimum amount of force required to change the shape of an object. This is to be done by twisting through the unit dimension. Mathematical expression for torsion can be given as:
\[\dfrac{T}{J}=\dfrac{G\times \theta }{L}=\dfrac{\tau }{r}\]
where,
T is torque
J is the polar moment of inertia of the shaft
$\tau $ is the shear stress
r is the radius of the shaft
G is the shear modulus
L length of the shaft
$\theta $ is the angle of twist
Thus, from the above equation we can conclude that torsional rigidity of the shaft is expressed as the torque required to produce a twist of one radian per unit length of the shaft. So, option D is correct.
Note: Torsional rigidity is the minimum force thus option A is incorrect. Also, it does not depend on the number of cycles before failure, thus option B is incorrect. And also, it does not resist torsion, shear, and bending stress thus, option C is also incorrect.
The question can also be solved using elimination methods.
Complete step by step answer:
Shafts are a type of mechanical component having a circular cross-section. They rotate and through this motion they emit power or in other words, we can say torque.
Torque is the force required for rotation.
Torsional rigidity is the minimum amount of force required to change the shape of an object. This is to be done by twisting through the unit dimension. Mathematical expression for torsion can be given as:
\[\dfrac{T}{J}=\dfrac{G\times \theta }{L}=\dfrac{\tau }{r}\]
where,
T is torque
J is the polar moment of inertia of the shaft
$\tau $ is the shear stress
r is the radius of the shaft
G is the shear modulus
L length of the shaft
$\theta $ is the angle of twist
Thus, from the above equation we can conclude that torsional rigidity of the shaft is expressed as the torque required to produce a twist of one radian per unit length of the shaft. So, option D is correct.
Note: Torsional rigidity is the minimum force thus option A is incorrect. Also, it does not depend on the number of cycles before failure, thus option B is incorrect. And also, it does not resist torsion, shear, and bending stress thus, option C is also incorrect.
The question can also be solved using elimination methods.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE