
The trigonometric equation $ \cos 2x-3\cos x+1=\dfrac{1}{\left( \cot 2x-\cot x \right)\sin \left( x-\pi \right)} $ holds if \[\]
A. $ \cos x=0 $ \[\]
B. $ \cos x=1 $ \[\]
C. $ \cos x=\dfrac{5}{2} $ \[\]
D. None of these \[\]
Answer
564.6k+ views
Hint: We multiply both side by $ \sin \left( x-\pi \right) $ and use shift by $ \pi $ formula $ \sin \left( \pi -\theta \right)=-\sin \theta $ . We convert all the rest of the terms into cosines using double angle formula $ \cos 2\theta =2{{\cos }^{2}}-1,\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } $ and the Pythagorean trigonometric identity $ {{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 $ . We get an equation in $ \cos x $ which we solve for $ \cos x $ to choose the correct option. \[\]
Complete step-by-step answer:
We are given the following trigonometric equation in the question.
\[\cos 2x-3\cos x+1=\dfrac{1}{\left( \cot 2x-\cot x \right)\sin \left( x-\pi \right)}\]
We are asked in the question for what condition on $ \cos x $ the above equation holds true. We know from domain and range of trigonometric functions that the cosine function $ \cos x $ lies between $ -1 $ to 1. Let us multiply $ \sin \left( x-\pi \right) $ both side to have;
\[\Rightarrow \left( \sin \left( x-\pi \right) \right)\left( \cos 2x-3\cos x+1 \right)=\dfrac{1}{\cot 2x-\cot x}\]
We use the formula for shift by $ {{\pi }^{c}} $ of sine that is $ \sin \left( \theta -\pi \right)=-\sin \theta $ in the left hand side to have;
\[\Rightarrow -\sin x\left( \cos 2x-3\cos x+1 \right)=\dfrac{1}{\cot 2x-\cot x}\]
We use the cosine double angle formula $ \cos 2\theta =2{{\cos }^{2}}\theta -1 $ in the left hand side of above step for $ \theta =x $ to have;
\[\begin{align}
& \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-1-3\cos x+1 \right)=\dfrac{1}{\cot 2x-\cot x} \\
& \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{1}{\cot 2x-\cot x} \\
\end{align}\]
We convert the co-tangents into tangents in the right hand side using the reciprocal relation $ \cot \theta =\dfrac{1}{\tan \theta } $ to have;
\[\Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{1}{\dfrac{1}{\tan 2x}-\dfrac{1}{\tan x}}\]
We use tangent double angle formula $ \tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } $ for $ \theta =x $ in the right hand side of the above step to have;
\[\begin{align}
& \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{1}{\dfrac{1}{\dfrac{2\tan x}{1-{{\tan }^{2}}x}}-\dfrac{1}{\tan x}} \\
& \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{1}{\dfrac{1-{{\tan }^{2}}x}{2\tan x}-\dfrac{1}{\tan x}} \\
\end{align}\]
We multiply 2 in the numerator and denominator $ \dfrac{1}{\tan x} $ in the right hand side to have;
\[\begin{align}
& \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{1}{\dfrac{1-{{\tan }^{2}}x}{2\tan x}-\dfrac{2}{2\tan x}} \\
& \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{1}{\dfrac{1-{{\tan }^{2}}x-2}{2\tan x}} \\
& \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{1}{\dfrac{-1-{{\tan }^{2}}x}{2\tan x}} \\
& \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{2\tan x}{-\left( 1+{{\tan }^{2}}x \right)} \\
\end{align}\]
We use the Pythagorean identity of tangent and secant of angle $ {{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 $ in the above step to have;
\[\Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{2\tan x}{-{{\sec }^{2}}x}\]
We convert the tangent and secant in the right hand side using the identities $ \sec \theta =\dfrac{1}{\cos \theta },\tan \theta =\dfrac{\sin \theta }{\cos \theta } $ to have;
\[\Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{2\dfrac{\sin x}{\cos x}}{-\dfrac{1}{{{\cos }^{2}}x}}\]
We cancel out the like terms top have;
\[\begin{align}
& \Rightarrow 2{{\cos }^{2}}x-3\cos x=2\cos x \\
& \Rightarrow 2{{\cos }^{2}}x-5\cos x=0 \\
\end{align}\]
Let us factorize by taking $ \cos x $ common and have;
\[\begin{align}
& \Rightarrow \cos x\left( 2\cos x-5 \right)=0 \\
& \Rightarrow \cos x=0\text{ or }2\cos x-5=0 \\
& \Rightarrow \cos x=0\text{ or }\cos x=\dfrac{5}{2} \\
\end{align}\]
We have two possibilities $ \cos x=0 $ or $ \cos x=\dfrac{5}{2}=2.5 $ but we know that $ -1\le \cos x\le 1 $ for all $ x\in \mathsf{\mathbb{R}} $ . So we reject $ \cos x=\dfrac{5}{2} $ and accept $ \cos x=0 $ as the only possible condition for the given equation to hold true. So the only correct option is A. \[\]
So, the correct answer is “Option A”.
Note: We can further solve for $ x $ from the obtained condition $ \cos x=0 $ and find solutions as $ x=\left( 2n+1 \right)\dfrac{\pi }{2} $ where $ n $ is an arbitrary integer. We note that the question presumes $ \cot 2x-\cot x\ne 0 $ and $ \sin \left( x-\pi \right)\ne 0\Rightarrow \sin x\ne 0 $ and that is why we could cancel out $ -\sin x $ . We must be careful of the confusion between reduction formula $ \sin \left( \pi -\theta \right)=\sin \theta $ and shift formula $ \sin \left( \theta -\pi \right)=-\sin \theta $ .
Complete step-by-step answer:
We are given the following trigonometric equation in the question.
\[\cos 2x-3\cos x+1=\dfrac{1}{\left( \cot 2x-\cot x \right)\sin \left( x-\pi \right)}\]
We are asked in the question for what condition on $ \cos x $ the above equation holds true. We know from domain and range of trigonometric functions that the cosine function $ \cos x $ lies between $ -1 $ to 1. Let us multiply $ \sin \left( x-\pi \right) $ both side to have;
\[\Rightarrow \left( \sin \left( x-\pi \right) \right)\left( \cos 2x-3\cos x+1 \right)=\dfrac{1}{\cot 2x-\cot x}\]
We use the formula for shift by $ {{\pi }^{c}} $ of sine that is $ \sin \left( \theta -\pi \right)=-\sin \theta $ in the left hand side to have;
\[\Rightarrow -\sin x\left( \cos 2x-3\cos x+1 \right)=\dfrac{1}{\cot 2x-\cot x}\]
We use the cosine double angle formula $ \cos 2\theta =2{{\cos }^{2}}\theta -1 $ in the left hand side of above step for $ \theta =x $ to have;
\[\begin{align}
& \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-1-3\cos x+1 \right)=\dfrac{1}{\cot 2x-\cot x} \\
& \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{1}{\cot 2x-\cot x} \\
\end{align}\]
We convert the co-tangents into tangents in the right hand side using the reciprocal relation $ \cot \theta =\dfrac{1}{\tan \theta } $ to have;
\[\Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{1}{\dfrac{1}{\tan 2x}-\dfrac{1}{\tan x}}\]
We use tangent double angle formula $ \tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } $ for $ \theta =x $ in the right hand side of the above step to have;
\[\begin{align}
& \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{1}{\dfrac{1}{\dfrac{2\tan x}{1-{{\tan }^{2}}x}}-\dfrac{1}{\tan x}} \\
& \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{1}{\dfrac{1-{{\tan }^{2}}x}{2\tan x}-\dfrac{1}{\tan x}} \\
\end{align}\]
We multiply 2 in the numerator and denominator $ \dfrac{1}{\tan x} $ in the right hand side to have;
\[\begin{align}
& \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{1}{\dfrac{1-{{\tan }^{2}}x}{2\tan x}-\dfrac{2}{2\tan x}} \\
& \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{1}{\dfrac{1-{{\tan }^{2}}x-2}{2\tan x}} \\
& \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{1}{\dfrac{-1-{{\tan }^{2}}x}{2\tan x}} \\
& \Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{2\tan x}{-\left( 1+{{\tan }^{2}}x \right)} \\
\end{align}\]
We use the Pythagorean identity of tangent and secant of angle $ {{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 $ in the above step to have;
\[\Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{2\tan x}{-{{\sec }^{2}}x}\]
We convert the tangent and secant in the right hand side using the identities $ \sec \theta =\dfrac{1}{\cos \theta },\tan \theta =\dfrac{\sin \theta }{\cos \theta } $ to have;
\[\Rightarrow -\sin x\left( 2{{\cos }^{2}}x-3\cos x \right)=\dfrac{2\dfrac{\sin x}{\cos x}}{-\dfrac{1}{{{\cos }^{2}}x}}\]
We cancel out the like terms top have;
\[\begin{align}
& \Rightarrow 2{{\cos }^{2}}x-3\cos x=2\cos x \\
& \Rightarrow 2{{\cos }^{2}}x-5\cos x=0 \\
\end{align}\]
Let us factorize by taking $ \cos x $ common and have;
\[\begin{align}
& \Rightarrow \cos x\left( 2\cos x-5 \right)=0 \\
& \Rightarrow \cos x=0\text{ or }2\cos x-5=0 \\
& \Rightarrow \cos x=0\text{ or }\cos x=\dfrac{5}{2} \\
\end{align}\]
We have two possibilities $ \cos x=0 $ or $ \cos x=\dfrac{5}{2}=2.5 $ but we know that $ -1\le \cos x\le 1 $ for all $ x\in \mathsf{\mathbb{R}} $ . So we reject $ \cos x=\dfrac{5}{2} $ and accept $ \cos x=0 $ as the only possible condition for the given equation to hold true. So the only correct option is A. \[\]
So, the correct answer is “Option A”.
Note: We can further solve for $ x $ from the obtained condition $ \cos x=0 $ and find solutions as $ x=\left( 2n+1 \right)\dfrac{\pi }{2} $ where $ n $ is an arbitrary integer. We note that the question presumes $ \cot 2x-\cot x\ne 0 $ and $ \sin \left( x-\pi \right)\ne 0\Rightarrow \sin x\ne 0 $ and that is why we could cancel out $ -\sin x $ . We must be careful of the confusion between reduction formula $ \sin \left( \pi -\theta \right)=\sin \theta $ and shift formula $ \sin \left( \theta -\pi \right)=-\sin \theta $ .
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

