Answer
Verified
503.1k+ views
Hint: Area of Parallelogram,$A = \dfrac{1}{2}\left| {{{\vec P}_1} \times {{\vec P}_2}} \right|$.
According to the question, we have two adjacent sides of parallelogram, which is $2\hat i - 4\hat j - 5\hat k$ and $2\hat i + 2\hat j + 3\hat k$
Now first we will assume the given value: -
$
\Rightarrow \vec a = 2\hat i - 4\hat j - 5\hat k \\
\Rightarrow \vec b = 2\hat i + 2\hat j + 3\hat k \\
$
And we know that any one diagonal of a parallelogram is given as
$
\vec P = \vec a + \vec b \\
\Rightarrow 2\hat i - 4\hat j - 5\hat k + 2\hat i + 2\hat j + 3\hat k \\
\Rightarrow 4\hat i - 2\hat j - 2\hat k \\
$
Therefore, we can calculate the unit vector along the diagonal, that is
$\dfrac{{{{\vec P}_1}}}{{\left| {{{\vec P}_1}} \right|}} = \dfrac{{4\hat i - 2\hat j - 2\hat k}}{{\sqrt {16 + 4 + 4} }} = \dfrac{{4\hat i - 2\hat j - 2\hat k}}{{\sqrt {24} }} = \dfrac{{4\hat i - 2\hat j - 2\hat k}}{{2 \times \sqrt 6 }}$
$ \Rightarrow \dfrac{{2\hat i - \hat j - \hat k}}{{\sqrt 6 }}$
Also, another diagonal of a parallelogram is given by: -
$
\Rightarrow {{\vec P}_2} = \vec b - \vec a \\
\Rightarrow 2\hat i + 2\hat j + 3\hat k - 2\hat i + 4\hat j + \hat k \\
\Rightarrow 6\hat j + 8\hat k \\
$
Therefore, unit vector along the diagonal is given by: -
$
\dfrac{{{{\vec P}_2}}}{{\left| {{{\vec P}_2}} \right|}} = \dfrac{{6\hat j + 8\hat k}}{{\sqrt {36 + 64} }} = \dfrac{{6\hat j + 8\hat k}}{{\sqrt {100} }} = \dfrac{{6\hat j + 8\hat k}}{{10}} \\
\Rightarrow \dfrac{{3\hat j + 4\hat k}}{5} \\
$
Now, we will take the cross product of the two diagonals
$
\Rightarrow {{\vec P}_1} \times {{\vec P}_2} \\
\Rightarrow \left( {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
4&{ - 2}&{ - 2} \\
0&6&8
\end{array}} \right) \\
$
Further solving and simplify gives
$
\Rightarrow \hat i\left( { - 16 + 12} \right) - \hat j\left( {32 - 0} \right) + \hat k\left( {24 - 0} \right) \\
\Rightarrow - 4\hat i - 32\hat j + 24\hat k \\
$
From here, we will calculate the Area of parallelogram
$A = \dfrac{1}{2}\left| {{{\vec P}_1} \times {{\vec P}_2}} \right| = \dfrac{1}{2} \times \sqrt {16 + 1024 + 57} = \dfrac{{\sqrt {1616} }}{2}$
So, the answer is
$ \Rightarrow \dfrac{{4\sqrt {101} }}{2} = 2\sqrt {101} sq.units$
Note: - Whenever such a type of question is asked Always start with finding the diagonals of a parallelogram. After that find the unit vector along the diagonals one by one. Then use the formula Area of Parallelogram in terms of Diagonals,$A = \dfrac{1}{2}\left| {{{\vec P}_1} \times {{\vec P}_2}} \right|$ where ${\vec P_1}$and${\vec P_2}$are diagonals of a Parallelogram.
According to the question, we have two adjacent sides of parallelogram, which is $2\hat i - 4\hat j - 5\hat k$ and $2\hat i + 2\hat j + 3\hat k$
Now first we will assume the given value: -
$
\Rightarrow \vec a = 2\hat i - 4\hat j - 5\hat k \\
\Rightarrow \vec b = 2\hat i + 2\hat j + 3\hat k \\
$
And we know that any one diagonal of a parallelogram is given as
$
\vec P = \vec a + \vec b \\
\Rightarrow 2\hat i - 4\hat j - 5\hat k + 2\hat i + 2\hat j + 3\hat k \\
\Rightarrow 4\hat i - 2\hat j - 2\hat k \\
$
Therefore, we can calculate the unit vector along the diagonal, that is
$\dfrac{{{{\vec P}_1}}}{{\left| {{{\vec P}_1}} \right|}} = \dfrac{{4\hat i - 2\hat j - 2\hat k}}{{\sqrt {16 + 4 + 4} }} = \dfrac{{4\hat i - 2\hat j - 2\hat k}}{{\sqrt {24} }} = \dfrac{{4\hat i - 2\hat j - 2\hat k}}{{2 \times \sqrt 6 }}$
$ \Rightarrow \dfrac{{2\hat i - \hat j - \hat k}}{{\sqrt 6 }}$
Also, another diagonal of a parallelogram is given by: -
$
\Rightarrow {{\vec P}_2} = \vec b - \vec a \\
\Rightarrow 2\hat i + 2\hat j + 3\hat k - 2\hat i + 4\hat j + \hat k \\
\Rightarrow 6\hat j + 8\hat k \\
$
Therefore, unit vector along the diagonal is given by: -
$
\dfrac{{{{\vec P}_2}}}{{\left| {{{\vec P}_2}} \right|}} = \dfrac{{6\hat j + 8\hat k}}{{\sqrt {36 + 64} }} = \dfrac{{6\hat j + 8\hat k}}{{\sqrt {100} }} = \dfrac{{6\hat j + 8\hat k}}{{10}} \\
\Rightarrow \dfrac{{3\hat j + 4\hat k}}{5} \\
$
Now, we will take the cross product of the two diagonals
$
\Rightarrow {{\vec P}_1} \times {{\vec P}_2} \\
\Rightarrow \left( {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
4&{ - 2}&{ - 2} \\
0&6&8
\end{array}} \right) \\
$
Further solving and simplify gives
$
\Rightarrow \hat i\left( { - 16 + 12} \right) - \hat j\left( {32 - 0} \right) + \hat k\left( {24 - 0} \right) \\
\Rightarrow - 4\hat i - 32\hat j + 24\hat k \\
$
From here, we will calculate the Area of parallelogram
$A = \dfrac{1}{2}\left| {{{\vec P}_1} \times {{\vec P}_2}} \right| = \dfrac{1}{2} \times \sqrt {16 + 1024 + 57} = \dfrac{{\sqrt {1616} }}{2}$
So, the answer is
$ \Rightarrow \dfrac{{4\sqrt {101} }}{2} = 2\sqrt {101} sq.units$
Note: - Whenever such a type of question is asked Always start with finding the diagonals of a parallelogram. After that find the unit vector along the diagonals one by one. Then use the formula Area of Parallelogram in terms of Diagonals,$A = \dfrac{1}{2}\left| {{{\vec P}_1} \times {{\vec P}_2}} \right|$ where ${\vec P_1}$and${\vec P_2}$are diagonals of a Parallelogram.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE