Answer
Verified
460.5k+ views
Hint: First we will take square of the given expression \[\left| {a - 2b} \right|\]. Then we will use the rule \[\vec a \cdot \vec a = {\left| {\vec a} \right|^2}\] and \[\vec b \cdot \vec a = \vec a \cdot \vec b\] in the obtained equation. Then simplify it to find the required value.
Complete step-by-step answer:
We are given that the two vectors \[a\] and \[b\] are perpendicular, \[\left| {\vec a} \right| = 8\] and \[\left| {\vec b} \right| = 3\].
Since we know that \[\vec a\] and \[\vec b\] are perpendicular, so \[\vec a \cdot \vec b = 0\].
Taking square of the given expression \[\left| {a - 2b} \right|\], we get
\[ \Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = \left( {\vec a - 2\vec b} \right) \cdot \left( {\vec a - 2\vec b} \right)\]
Simplifying the right hand side of the above equation, we get
\[ \Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = \vec a \cdot \vec a - 2 \cdot \vec b \cdot \vec a - 2 \cdot \vec a \cdot \vec b + 4\vec b \cdot \vec b\]
Using the rule, \[\vec a \cdot \vec a = {\left| {\vec a} \right|^2}\] in the above equation, we get
\[ \Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = {\left| {\vec a} \right|^2} - 2 \cdot \vec b \cdot \vec a - 2 \cdot \vec a \cdot \vec b + 4{\left| {\vec b} \right|^2}\]
Using the rule, \[\vec b \cdot \vec a = \vec a \cdot \vec b\] in the above equation, we get
\[
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = {\left| {\vec a} \right|^2} - 2 \cdot \vec a \cdot \vec b - 2 \cdot \vec a \cdot \vec b + 4{\left| {\vec b} \right|^2} \\
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = {\left| {\vec a} \right|^2} - 4\vec a \cdot \vec b + 4{\left| {\vec b} \right|^2} \\
\]
Substituting the values \[\left| {\vec a} \right| = 8\] , \[\left| {\vec b} \right| = 3\] and \[\vec a \cdot \vec b = 0\] in the above equation, we get
\[
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = {8^2} - 4\left( 0 \right) + 4\left( {{3^2}} \right) \\
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = 64 - 0 + 4 \cdot 9 \\
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = 64 + 36 \\
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = 100 \\
\]
Taking square root on both sides of the above equation, we get
\[
\Rightarrow \left| {\vec a - 2\vec b} \right| = \pm \sqrt {100} \\
\Rightarrow \left| {\vec a - 2\vec b} \right| = \pm 10 \\
\]
Since the magnitude can never be negative, the negative value of \[\left| {\vec a - 2\vec b} \right|\] is discarded.
Therefore, 10 is the required value.
Note: One should know that the magnitude of a vector is the length of a line segment and the vector, which has a magnitude of 1 is known as the unit vector. The key point is to use the rules \[\vec a \cdot \vec a = {\left| {\vec a} \right|^2}\] and \[\vec b \cdot \vec a = \vec a \cdot \vec b\] to simplify. We need to know that when two vectors are perpendicular, then their dot product is always zero or else the answer will be wrong.
Complete step-by-step answer:
We are given that the two vectors \[a\] and \[b\] are perpendicular, \[\left| {\vec a} \right| = 8\] and \[\left| {\vec b} \right| = 3\].
Since we know that \[\vec a\] and \[\vec b\] are perpendicular, so \[\vec a \cdot \vec b = 0\].
Taking square of the given expression \[\left| {a - 2b} \right|\], we get
\[ \Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = \left( {\vec a - 2\vec b} \right) \cdot \left( {\vec a - 2\vec b} \right)\]
Simplifying the right hand side of the above equation, we get
\[ \Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = \vec a \cdot \vec a - 2 \cdot \vec b \cdot \vec a - 2 \cdot \vec a \cdot \vec b + 4\vec b \cdot \vec b\]
Using the rule, \[\vec a \cdot \vec a = {\left| {\vec a} \right|^2}\] in the above equation, we get
\[ \Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = {\left| {\vec a} \right|^2} - 2 \cdot \vec b \cdot \vec a - 2 \cdot \vec a \cdot \vec b + 4{\left| {\vec b} \right|^2}\]
Using the rule, \[\vec b \cdot \vec a = \vec a \cdot \vec b\] in the above equation, we get
\[
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = {\left| {\vec a} \right|^2} - 2 \cdot \vec a \cdot \vec b - 2 \cdot \vec a \cdot \vec b + 4{\left| {\vec b} \right|^2} \\
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = {\left| {\vec a} \right|^2} - 4\vec a \cdot \vec b + 4{\left| {\vec b} \right|^2} \\
\]
Substituting the values \[\left| {\vec a} \right| = 8\] , \[\left| {\vec b} \right| = 3\] and \[\vec a \cdot \vec b = 0\] in the above equation, we get
\[
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = {8^2} - 4\left( 0 \right) + 4\left( {{3^2}} \right) \\
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = 64 - 0 + 4 \cdot 9 \\
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = 64 + 36 \\
\Rightarrow {\left| {\vec a - 2\vec b} \right|^2} = 100 \\
\]
Taking square root on both sides of the above equation, we get
\[
\Rightarrow \left| {\vec a - 2\vec b} \right| = \pm \sqrt {100} \\
\Rightarrow \left| {\vec a - 2\vec b} \right| = \pm 10 \\
\]
Since the magnitude can never be negative, the negative value of \[\left| {\vec a - 2\vec b} \right|\] is discarded.
Therefore, 10 is the required value.
Note: One should know that the magnitude of a vector is the length of a line segment and the vector, which has a magnitude of 1 is known as the unit vector. The key point is to use the rules \[\vec a \cdot \vec a = {\left| {\vec a} \right|^2}\] and \[\vec b \cdot \vec a = \vec a \cdot \vec b\] to simplify. We need to know that when two vectors are perpendicular, then their dot product is always zero or else the answer will be wrong.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE