![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The unit of electric field is not equivalent to:
$\begin{align}
& \left( A \right)\dfrac{N}{C} \\
& \left( B \right)\dfrac{J}{C} \\
& \left( C \right)\dfrac{V}{m} \\
& \left( D \right)\dfrac{J}{C-m} \\
\end{align}$
Answer
416.1k+ views
Hint: We have to compare the unit of electric field with the units of the terms given in our problem. The simplest method to do so is by writing the dimensional formula of all the terms and then just comparing them. In this way, we can find out the unit which is not equivalent to the electric field. We shall proceed in this manner only.
Complete answer:
Let us first of all find the dimensional formula of electric field and then we will find the dimensional formula of all the other terms for comparison. The dimensional formula of electric field is given by:
$\Rightarrow \left[ \overrightarrow{E} \right]=\left[ {{M}^{1}}{{L}^{1}}{{I}^{-1}}{{T}^{-3}} \right]$
We will use this as a reference for comparison.
Now, we have:
(A) Dimensional formula of $\dfrac{N}{C}$. Here, ‘N’ is Newton and ‘C’ is coulomb. Therefore, the dimensional formula will be given by:
$\begin{align}
& \Rightarrow \left[ \dfrac{N}{C} \right]=\left[ \dfrac{{{M}^{1}}{{L}^{1}}{{T}^{-2}}}{{{I}^{1}}{{T}^{1}}} \right] \\
& \Rightarrow \left[ \dfrac{N}{C} \right]=\left[ {{M}^{1}}{{L}^{1}}{{I}^{-1}}{{T}^{-3}} \right] \\
\end{align}$
This is equal to the dimensional formula of electric field. Hence, their units are the same.
(B) Dimensional formula of $\dfrac{J}{C}$. Here, ‘J’ is Joule and ‘C’ is coulomb. Therefore, the dimensional formula will be given by:
$\begin{align}
& \Rightarrow \left[ \dfrac{J}{C} \right]=\left[ \dfrac{{{M}^{1}}{{L}^{2}}{{T}^{-2}}}{{{I}^{1}}{{T}^{1}}} \right] \\
& \Rightarrow \left[ \dfrac{J}{C} \right]=\left[ {{M}^{1}}{{L}^{2}}{{I}^{-1}}{{T}^{-3}} \right] \\
\end{align}$
This is not equal to the dimensional formula of electric field. Hence, their units are not the same
(C) Dimensional formula of $\dfrac{V}{m}$. Here, ‘V’ is Volt (a measure of electric potential) and ‘m’ is meter. Therefore, the dimensional formula will be given by:
$\begin{align}
& \Rightarrow \left[ \dfrac{V}{m} \right]=\left[ \dfrac{{{M}^{1}}{{L}^{2}}{{I}^{-1}}{{T}^{-3}}}{{{L}^{1}}} \right] \\
& \Rightarrow \left[ \dfrac{V}{m} \right]=\left[ {{M}^{1}}{{L}^{1}}{{I}^{-1}}{{T}^{-3}} \right] \\
\end{align}$
This is equal to the dimensional formula of electric field. Hence, their units are the same.
(D) Dimensional formula of $\dfrac{J}{C-m}$. Here, ‘J’ is Joule, ‘C’ is coulomb and ‘m’ is meter. Therefore, the dimensional formula will be given by:
$\begin{align}
& \Rightarrow \left[ \dfrac{J}{C-m} \right]=\left[ \dfrac{{{M}^{1}}{{L}^{2}}{{T}^{-2}}}{{{I}^{1}}{{T}^{1}}{{L}^{1}}} \right] \\
& \Rightarrow \left[ \dfrac{J}{C-m} \right]=\left[ {{M}^{1}}{{L}^{1}}{{I}^{-1}}{{T}^{-3}} \right] \\
\end{align}$
This is equal to the dimensional formula of electric field. Hence, their units are the same.
Hence, the unit of electric field is not equivalent to $\dfrac{J}{C}$.
Hence, option (B) is the correct option.
Note:
Whenever calculating or comparing the units of two quantities, the method of dimensional formula is a sure shot method with no exceptions. It can be used for any quantity in Physics. One should also be careful while writing the dimensional formulas of different terms as a slight mistake can result in error in our solution.
Complete answer:
Let us first of all find the dimensional formula of electric field and then we will find the dimensional formula of all the other terms for comparison. The dimensional formula of electric field is given by:
$\Rightarrow \left[ \overrightarrow{E} \right]=\left[ {{M}^{1}}{{L}^{1}}{{I}^{-1}}{{T}^{-3}} \right]$
We will use this as a reference for comparison.
Now, we have:
(A) Dimensional formula of $\dfrac{N}{C}$. Here, ‘N’ is Newton and ‘C’ is coulomb. Therefore, the dimensional formula will be given by:
$\begin{align}
& \Rightarrow \left[ \dfrac{N}{C} \right]=\left[ \dfrac{{{M}^{1}}{{L}^{1}}{{T}^{-2}}}{{{I}^{1}}{{T}^{1}}} \right] \\
& \Rightarrow \left[ \dfrac{N}{C} \right]=\left[ {{M}^{1}}{{L}^{1}}{{I}^{-1}}{{T}^{-3}} \right] \\
\end{align}$
This is equal to the dimensional formula of electric field. Hence, their units are the same.
(B) Dimensional formula of $\dfrac{J}{C}$. Here, ‘J’ is Joule and ‘C’ is coulomb. Therefore, the dimensional formula will be given by:
$\begin{align}
& \Rightarrow \left[ \dfrac{J}{C} \right]=\left[ \dfrac{{{M}^{1}}{{L}^{2}}{{T}^{-2}}}{{{I}^{1}}{{T}^{1}}} \right] \\
& \Rightarrow \left[ \dfrac{J}{C} \right]=\left[ {{M}^{1}}{{L}^{2}}{{I}^{-1}}{{T}^{-3}} \right] \\
\end{align}$
This is not equal to the dimensional formula of electric field. Hence, their units are not the same
(C) Dimensional formula of $\dfrac{V}{m}$. Here, ‘V’ is Volt (a measure of electric potential) and ‘m’ is meter. Therefore, the dimensional formula will be given by:
$\begin{align}
& \Rightarrow \left[ \dfrac{V}{m} \right]=\left[ \dfrac{{{M}^{1}}{{L}^{2}}{{I}^{-1}}{{T}^{-3}}}{{{L}^{1}}} \right] \\
& \Rightarrow \left[ \dfrac{V}{m} \right]=\left[ {{M}^{1}}{{L}^{1}}{{I}^{-1}}{{T}^{-3}} \right] \\
\end{align}$
This is equal to the dimensional formula of electric field. Hence, their units are the same.
(D) Dimensional formula of $\dfrac{J}{C-m}$. Here, ‘J’ is Joule, ‘C’ is coulomb and ‘m’ is meter. Therefore, the dimensional formula will be given by:
$\begin{align}
& \Rightarrow \left[ \dfrac{J}{C-m} \right]=\left[ \dfrac{{{M}^{1}}{{L}^{2}}{{T}^{-2}}}{{{I}^{1}}{{T}^{1}}{{L}^{1}}} \right] \\
& \Rightarrow \left[ \dfrac{J}{C-m} \right]=\left[ {{M}^{1}}{{L}^{1}}{{I}^{-1}}{{T}^{-3}} \right] \\
\end{align}$
This is equal to the dimensional formula of electric field. Hence, their units are the same.
Hence, the unit of electric field is not equivalent to $\dfrac{J}{C}$.
Hence, option (B) is the correct option.
Note:
Whenever calculating or comparing the units of two quantities, the method of dimensional formula is a sure shot method with no exceptions. It can be used for any quantity in Physics. One should also be careful while writing the dimensional formulas of different terms as a slight mistake can result in error in our solution.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many valence electrons does nitrogen have class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)