![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The unit of Wien’s constant b is:
A. \[W{m^{ - 2}}{K^{ - 4}}\]
B. \[{m^{ - 1}}{K^{ - 1}}\]
C. \[W{m^2}\]
D. \[mK\]
Answer
499.2k+ views
Hint - In order to solve this problem obtain the formula in which b is included and you know the unit of all other variables then get the value of b and get the unit of b. doing this will solve your problem and will give you the right answer.
Complete step-by-step answer:
\[\lambda \propto \dfrac{1}{T}\]
\[ \Rightarrow \lambda = \dfrac{b}{T}\] , where b is Wien’s constant of proportionality.
Wien's constant is a physical constant that determines the relationship between the thermodynamic temperature of a black body (an object that radiates electromagnetic energy perfectly) and the frequency at which the radiation intensity becomes maximum.
I.e. \[ \Rightarrow \lambda = \dfrac{b}{T}\] where b is constant of proportionality.
Using the dimensional continuity rule, the usage on L.H.S. will be equal to the value on R.H.S.
I.e. LHS=\[\lambda \] since S.I. unit of \[\lambda \] is m. therefore, its dimension is \[\left[ {{M^0}{L^1}{T^0}} \right]\]
On RHS we have \[\dfrac{b}{T}\] where S.I. unit is K therefore dimensions of T is \[{K^{ - 1}}\]
Because it is a statute, the proportions of L.H.S. will be equal to R.H.S.
i.e. \[\left[ {{M^0}{L^1}{T^0}} \right] = b\left[ {{K^{ - 1}}} \right]\]
\[ \Rightarrow b = \dfrac{{\left[ {{M^0}{L^1}{T^0}} \right]}}{{\left[ {{K^{ - 1}}} \right]}}\]
\[ \Rightarrow b = \left[ {{M^0}{T^0}{L^1}K} \right]\]
Since the dimension of b is \[\left[ {{M^0}{T^0}{L^1}K} \right]\]. The S.I., then. The Wien constant unit is m. K., where m is S.I. The length unit and the K is the S.I. The temperature unit.
Hence, the correct option is D.
Note – In such types of questions of finding units we can simply apply the basic principle of Dimensional analysis, according to which for an equation to be valid it should follow dimensional consistency,i.e. the units on L.H.S. should be equal to the units on R.H.S.
Complete step-by-step answer:
\[\lambda \propto \dfrac{1}{T}\]
\[ \Rightarrow \lambda = \dfrac{b}{T}\] , where b is Wien’s constant of proportionality.
Wien's constant is a physical constant that determines the relationship between the thermodynamic temperature of a black body (an object that radiates electromagnetic energy perfectly) and the frequency at which the radiation intensity becomes maximum.
I.e. \[ \Rightarrow \lambda = \dfrac{b}{T}\] where b is constant of proportionality.
Using the dimensional continuity rule, the usage on L.H.S. will be equal to the value on R.H.S.
I.e. LHS=\[\lambda \] since S.I. unit of \[\lambda \] is m. therefore, its dimension is \[\left[ {{M^0}{L^1}{T^0}} \right]\]
On RHS we have \[\dfrac{b}{T}\] where S.I. unit is K therefore dimensions of T is \[{K^{ - 1}}\]
Because it is a statute, the proportions of L.H.S. will be equal to R.H.S.
i.e. \[\left[ {{M^0}{L^1}{T^0}} \right] = b\left[ {{K^{ - 1}}} \right]\]
\[ \Rightarrow b = \dfrac{{\left[ {{M^0}{L^1}{T^0}} \right]}}{{\left[ {{K^{ - 1}}} \right]}}\]
\[ \Rightarrow b = \left[ {{M^0}{T^0}{L^1}K} \right]\]
Since the dimension of b is \[\left[ {{M^0}{T^0}{L^1}K} \right]\]. The S.I., then. The Wien constant unit is m. K., where m is S.I. The length unit and the K is the S.I. The temperature unit.
Hence, the correct option is D.
Note – In such types of questions of finding units we can simply apply the basic principle of Dimensional analysis, according to which for an equation to be valid it should follow dimensional consistency,i.e. the units on L.H.S. should be equal to the units on R.H.S.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Business Studies: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Accountancy: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
With reference to graphite and diamond which of the class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many valence electrons does nitrogen have class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)