
The universal law of gravitation was postulated by:
A. Copernicus
B. Newton
C. Galileo
D. Archimedes
Answer
566.4k+ views
Hint: In this question, we need to comment on who postulated the universal law of gravitation. For this, we will follow the concept of gravitation and the law established.
Complete step by step answer:Sir Isaac Newton (or just Newton) postulated the universal law of gravitation in the year of 1687 (precisely on 5th July 1687) which states that the “Every particle on the Universe is attracted by another particle by a force which is proportional to the product of the masses involve and inversely proportional to the square of the distance between the masses involved. Mathematically,
${F_G} \propto {m_1}{m_2}$ and ${F_G} \propto {1/}{{{r^2}}}$ where, ${F_G}$ is the gravitational force of attraction between the masses, ${m_1}$ and ${m_2}$ are the masses and $r$ is the distance between the masses.
Therefore, we can write:
${F_G} = G \cdot {{{m_1}{m_2}}}{{{r^2}}}$ where, G is the proportional constant, known as the gravitational constant. Its value is given as $G = 6.674 \times {10^{ - 11}}$ and its units is derived as ${m^3}k{g^{ - 1}}{s^{ - 2}}$.
Option B is correct.
Note:Students should be aware of using the value of constants with the units associated with it. The value of the gravitational constant changes with the units associated.
Nicolaus Copernicus was an astronomer who proposed a heliocentric system.
Galileo was an astronomer who proposed the telescopic confirmation of Venus.
Archimedes gave the law of Archimedes principle (force of buoyancy).
Complete step by step answer:Sir Isaac Newton (or just Newton) postulated the universal law of gravitation in the year of 1687 (precisely on 5th July 1687) which states that the “Every particle on the Universe is attracted by another particle by a force which is proportional to the product of the masses involve and inversely proportional to the square of the distance between the masses involved. Mathematically,
${F_G} \propto {m_1}{m_2}$ and ${F_G} \propto {1/}{{{r^2}}}$ where, ${F_G}$ is the gravitational force of attraction between the masses, ${m_1}$ and ${m_2}$ are the masses and $r$ is the distance between the masses.
Therefore, we can write:
${F_G} = G \cdot {{{m_1}{m_2}}}{{{r^2}}}$ where, G is the proportional constant, known as the gravitational constant. Its value is given as $G = 6.674 \times {10^{ - 11}}$ and its units is derived as ${m^3}k{g^{ - 1}}{s^{ - 2}}$.
Option B is correct.
Note:Students should be aware of using the value of constants with the units associated with it. The value of the gravitational constant changes with the units associated.
Nicolaus Copernicus was an astronomer who proposed a heliocentric system.
Galileo was an astronomer who proposed the telescopic confirmation of Venus.
Archimedes gave the law of Archimedes principle (force of buoyancy).
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which animal has three hearts class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

The camels hump is made of which tissues a Skeletal class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

The percentage of free SO3 in oleum sample which is class 11 chemistry CBSE

