
The value $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}}$ is
A.Positive
B.Negative
C.Zero
D.Cannot be determined
Answer
578.1k+ views
Hint: First we’ll find different terms of the given expression, from there we’ll find the similarity, of the terms of the expression like some constant reoccurring terms.
After finding the expression we’ll find the value of the expression for different values of n, as n is not defined so it can be even or odd, so we make 2 cases and solve for both.
Complete step-by-step answer:
Given data: the expression $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}}$
We know that, ${i^2} = - 1........(i)$
Squaring both the sides
$ \Rightarrow {i^4} = 1.......(ii)$
Multiplying equation(i) and (ii)
$ \Rightarrow {i^6} = - 1........(iii)$
Multiplying equation(i) and (iii)
$ \Rightarrow {i^8} = 1........(iv)$
on concluding from the above equation we can say that the expression terms are only 1 and -1 occurring alternatively
i.e. $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 1 + ( - 1) + 1 + ( - 1) + 1 + ( - 1) + ....{i^{2n}}$
now, we can write as ${i^{2n}} = {\left( {{i^2}} \right)^n}$
${i^{2n}} = {\left( { - 1} \right)^n}$
It is well known that ${\left( { - 1} \right)^a}$ is equal to 1 if a is even number and is equal to (-1) if a is odd
now if n is an even number in the expression, then the expression will end with 1
i.e. $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 1 + ( - 1) + 1 + ( - 1) + 1 + ( - 1) + ....1$
$\therefore 1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 1$
if n is an odd number in the expression, then the expression will end with (-1)
i.e. $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 1 + ( - 1) + 1 + ( - 1) + 1 + ( - 1) + ....1 + ( - 1)$
$\therefore 1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 0$
Therefore from the above equation, we conclude that the value of the given expression depends on the value on n and hence cannot be determined.
Option(D) is correct.
Note: An alternative method for this solution can be
We can see that the expression $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}}$is a G.P. with a common ratio ${i^2}$
We know that the sum of first n terms of a G.P. with the first term as a and common ratio as r
${S_n} = a\dfrac{{\left( {{r^n} - 1} \right)}}{{\left( {r - 1} \right)}}$
Therefore for the expression, $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 1\dfrac{{({{\left( {{i^2}} \right)}^{n + 1}} - 1)}}{{({i^2} - 1)}}$
Using ${i^2} = - 1$
$ = \dfrac{{({{\left( { - 1} \right)}^{n + 1}} - 1)}}{{( - 1 - 1)}}$
$ = \dfrac{{({{\left( { - 1} \right)}^{n + 1}} - 1)}}{{ - 2}}$
Now if n is even, (n+1) will be odd and ${\left( { - 1} \right)^{n + 1}} = - 1$
\[\therefore \dfrac{{({{\left( { - 1} \right)}^{n + 1}} - 1)}}{{ - 2}} = \dfrac{{( - 1 - 1)}}{{ - 2}}\]
\[ = 1\]
And if n is odd, (n+1) will be even and ${\left( { - 1} \right)^{n + 1}} = 1$
\[\therefore \dfrac{{({{\left( { - 1} \right)}^{n + 1}} - 1)}}{{ - 2}} = \dfrac{{(1 - 1)}}{{ - 2}}\]
\[ = 0\]
Hence, cannot be determined.
After finding the expression we’ll find the value of the expression for different values of n, as n is not defined so it can be even or odd, so we make 2 cases and solve for both.
Complete step-by-step answer:
Given data: the expression $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}}$
We know that, ${i^2} = - 1........(i)$
Squaring both the sides
$ \Rightarrow {i^4} = 1.......(ii)$
Multiplying equation(i) and (ii)
$ \Rightarrow {i^6} = - 1........(iii)$
Multiplying equation(i) and (iii)
$ \Rightarrow {i^8} = 1........(iv)$
on concluding from the above equation we can say that the expression terms are only 1 and -1 occurring alternatively
i.e. $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 1 + ( - 1) + 1 + ( - 1) + 1 + ( - 1) + ....{i^{2n}}$
now, we can write as ${i^{2n}} = {\left( {{i^2}} \right)^n}$
${i^{2n}} = {\left( { - 1} \right)^n}$
It is well known that ${\left( { - 1} \right)^a}$ is equal to 1 if a is even number and is equal to (-1) if a is odd
now if n is an even number in the expression, then the expression will end with 1
i.e. $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 1 + ( - 1) + 1 + ( - 1) + 1 + ( - 1) + ....1$
$\therefore 1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 1$
if n is an odd number in the expression, then the expression will end with (-1)
i.e. $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 1 + ( - 1) + 1 + ( - 1) + 1 + ( - 1) + ....1 + ( - 1)$
$\therefore 1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 0$
Therefore from the above equation, we conclude that the value of the given expression depends on the value on n and hence cannot be determined.
Option(D) is correct.
Note: An alternative method for this solution can be
We can see that the expression $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}}$is a G.P. with a common ratio ${i^2}$
We know that the sum of first n terms of a G.P. with the first term as a and common ratio as r
${S_n} = a\dfrac{{\left( {{r^n} - 1} \right)}}{{\left( {r - 1} \right)}}$
Therefore for the expression, $1 + {i^2} + {i^4} + {i^6} + {i^8} + ..........{i^{2n}} = 1\dfrac{{({{\left( {{i^2}} \right)}^{n + 1}} - 1)}}{{({i^2} - 1)}}$
Using ${i^2} = - 1$
$ = \dfrac{{({{\left( { - 1} \right)}^{n + 1}} - 1)}}{{( - 1 - 1)}}$
$ = \dfrac{{({{\left( { - 1} \right)}^{n + 1}} - 1)}}{{ - 2}}$
Now if n is even, (n+1) will be odd and ${\left( { - 1} \right)^{n + 1}} = - 1$
\[\therefore \dfrac{{({{\left( { - 1} \right)}^{n + 1}} - 1)}}{{ - 2}} = \dfrac{{( - 1 - 1)}}{{ - 2}}\]
\[ = 1\]
And if n is odd, (n+1) will be even and ${\left( { - 1} \right)^{n + 1}} = 1$
\[\therefore \dfrac{{({{\left( { - 1} \right)}^{n + 1}} - 1)}}{{ - 2}} = \dfrac{{(1 - 1)}}{{ - 2}}\]
\[ = 0\]
Hence, cannot be determined.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

