
The value of $ 1eV{\text{ato}}{{\text{m}}^{ - 1}} $ is:
(A) $ 23.06{\text{ }}kcalmo{l^{ - 1}} $
(B) $ 96.45{\text{ }}kJmo{l^{ - 1}} $
(C) $ 1.602 \times {10^{ - 19}}{\text{ }}Jato{m^{ - 1}} $
(D) All of these
Answer
510.3k+ views
Hint : $ 1eV $ is defined as the energy gained by an electron when it has been accelerated by a potential difference of $ 1 $ volt. The work function of $ 1eV $ mainly depends on the properties of the metal and is highest for platinum with $ 5.65eV $ and lowest for caesium with $ 2.14eV $ .
Complete Step By Step Answer:
We know, $ 1eV = 1.602 \times {10^{ - 19}}J $
$\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = 1.602 \times {10^{ -19}}J{\text{ato}}{{\text{m}}^{ - 1}} $
$\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = 1.602 \times {10^{ - 19}} \times 6.022 \times {10^{23}}J{\text{mo}}{{\text{l}}^{ - 1}} $
$\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = 96.45kJ{\text{mo}}{{\text{l}}^{ - 1}} $
$\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = \dfrac{{96.45}}{{4.18}}Kcalmo{l^{ - 1}} $
$\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = 23.06Kcal{\text{mo}}{{\text{l}}^{ - 1}} $
Therefore, from the above expressions we can conclude that option (d) All of these is the correct answer.
Note :
To convert $ 1eVato{m^{ - 1}} $ to $ Kcal\;Mo{l^{ - 1}} $ , first convert it to $ Jmo{l^{ - 1}} $ using $ 1eV = 1.602 \times {10^{ - 19}}Jato{m^{ - 1}} $ and then multiply by Avogadro’s number $ 6.022 \times {10^{23}} $ . Now to convert the $ KJ $ into $ Kcal\;Mo{l^{ - 1}} $ , divide by $ 4.18 $ .
Complete Step By Step Answer:
We know, $ 1eV = 1.602 \times {10^{ - 19}}J $
$\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = 1.602 \times {10^{ -19}}J{\text{ato}}{{\text{m}}^{ - 1}} $
$\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = 1.602 \times {10^{ - 19}} \times 6.022 \times {10^{23}}J{\text{mo}}{{\text{l}}^{ - 1}} $
$\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = 96.45kJ{\text{mo}}{{\text{l}}^{ - 1}} $
$\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = \dfrac{{96.45}}{{4.18}}Kcalmo{l^{ - 1}} $
$\therefore 1eV{\text{ato}}{{\text{m}}^{ - 1}} = 23.06Kcal{\text{mo}}{{\text{l}}^{ - 1}} $
Therefore, from the above expressions we can conclude that option (d) All of these is the correct answer.
Note :
To convert $ 1eVato{m^{ - 1}} $ to $ Kcal\;Mo{l^{ - 1}} $ , first convert it to $ Jmo{l^{ - 1}} $ using $ 1eV = 1.602 \times {10^{ - 19}}Jato{m^{ - 1}} $ and then multiply by Avogadro’s number $ 6.022 \times {10^{23}} $ . Now to convert the $ KJ $ into $ Kcal\;Mo{l^{ - 1}} $ , divide by $ 4.18 $ .
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

