The value of \[{}^2{P_1} + {}^3{P_1} + ... + {}^n{P_1}\] is equal to
A.\[\dfrac{{{n^2} - n + 2}}{2}\]
B.\[\dfrac{{{n^2} + n + 2}}{2}\]
C.\[\dfrac{{{n^2} + n - 1}}{2}\]
D.\[\dfrac{{{n^2} - n - 1}}{2}\]
E.\[\dfrac{{{n^2} + n - 2}}{2}\]
Answer
Verified
466.5k+ views
Hint: Here, we will use formula of permutation, \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen. Then we will simplify it using \[1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}\].
Complete step-by-step answer:
We are given that \[{}^2{P_1} + {}^3{P_1} + ... + {}^n{P_1}\].
We know that the formula of permutation, \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen.
Using the above formula in the terms of the given series, we get
\[
\Rightarrow \dfrac{{2!}}{{\left( {2 - 1} \right)!}} + \dfrac{{3!}}{{\left( {3 - 1} \right)!}} + ... + \dfrac{{n!}}{{\left( {n - 1} \right)!}} \\
\Rightarrow \dfrac{{2!}}{{1!}} + \dfrac{{3!}}{{2!}} + ... + \dfrac{{n!}}{{\left( {n - 1} \right)!}} \\
\]
Simplifying the factorials in the above expression, we get
\[ \Rightarrow \dfrac{{2 \times 1!}}{{1!}} + \dfrac{{3 \times 2!}}{{2!}} + ... + \dfrac{{n \times \left( {n - 1} \right)!}}{{\left( {n - 1} \right)!}}\]
We will now cancel the same factorials in numerators and denominators in the above expression, we get
\[ \Rightarrow 2 + 3 + ... + n\]
Adding and subtracting the above equation with 1, we get
\[ \Rightarrow 1 + 2 + 3 + ... + n - 1\]
Using the formula, \[1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}\] in the above equation and simplifying, we get
\[
\Rightarrow \dfrac{{n\left( {n + 1} \right)}}{2} - 1 \\
\Rightarrow \dfrac{{n\left( {n + 1} \right) - 2}}{2} \\
\Rightarrow \dfrac{{{n^2} + n - 2}}{2} \\
\]
Hence, option E is correct.
Note: In solving these types of questions, you should be familiar with the formula of permutations. Some students use the formula of combinations, \[{}^n{C_r} = \dfrac{{\left. {\underline {\,
n \,}}\! \right| }}{{\left. {\underline {\,
r \,}}\! \right| \cdot \left. {\underline {\,
{n - r} \,}}\! \right| }}\] instead of permutations is \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen, which is wrong.
Complete step-by-step answer:
We are given that \[{}^2{P_1} + {}^3{P_1} + ... + {}^n{P_1}\].
We know that the formula of permutation, \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen.
Using the above formula in the terms of the given series, we get
\[
\Rightarrow \dfrac{{2!}}{{\left( {2 - 1} \right)!}} + \dfrac{{3!}}{{\left( {3 - 1} \right)!}} + ... + \dfrac{{n!}}{{\left( {n - 1} \right)!}} \\
\Rightarrow \dfrac{{2!}}{{1!}} + \dfrac{{3!}}{{2!}} + ... + \dfrac{{n!}}{{\left( {n - 1} \right)!}} \\
\]
Simplifying the factorials in the above expression, we get
\[ \Rightarrow \dfrac{{2 \times 1!}}{{1!}} + \dfrac{{3 \times 2!}}{{2!}} + ... + \dfrac{{n \times \left( {n - 1} \right)!}}{{\left( {n - 1} \right)!}}\]
We will now cancel the same factorials in numerators and denominators in the above expression, we get
\[ \Rightarrow 2 + 3 + ... + n\]
Adding and subtracting the above equation with 1, we get
\[ \Rightarrow 1 + 2 + 3 + ... + n - 1\]
Using the formula, \[1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}\] in the above equation and simplifying, we get
\[
\Rightarrow \dfrac{{n\left( {n + 1} \right)}}{2} - 1 \\
\Rightarrow \dfrac{{n\left( {n + 1} \right) - 2}}{2} \\
\Rightarrow \dfrac{{{n^2} + n - 2}}{2} \\
\]
Hence, option E is correct.
Note: In solving these types of questions, you should be familiar with the formula of permutations. Some students use the formula of combinations, \[{}^n{C_r} = \dfrac{{\left. {\underline {\,
n \,}}\! \right| }}{{\left. {\underline {\,
r \,}}\! \right| \cdot \left. {\underline {\,
{n - r} \,}}\! \right| }}\] instead of permutations is \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen, which is wrong.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE