Answer
Verified
497.4k+ views
Hint: Expand the given entity. It gives the expansion form of ${{e}^{\log 2\ }}and\ {{e}^{2\log 2}}$. Substitute the exponent values and simplify the expression obtained until you get a whole number.
Complete step-by-step answer:
Given us $4+2\left( 1+2 \right)\log 2+\dfrac{2\left( 1+{{2}^{2}} \right){{\left( \log 2 \right)}^{2}}}{2!}+\dfrac{2\left( 1+{{2}^{3}} \right){{\left( \log 2 \right)}^{3}}}{3!}$
Take the first number 4 it can split as 2 + 2;
Take 2nd value, $2\left( 1+2 \right)\log 2$ it can be split us as;
$\left( 2+2\times 2 \right)\log 2=2\log 2+4\log 2$
Similarly,
$\dfrac{2\left( 1+{{2}^{2}} \right){{\left( \log 2 \right)}^{2}}}{2!}=\dfrac{\left( 2+{{2}^{3}} \right){{\left( \log 2 \right)}^{2}}}{2!}=\dfrac{2{{\left( \log 2 \right)}^{2}}}{2!}+\dfrac{{{2}^{3}}{{\left( \log 2 \right)}^{2}}}{2!}$
The other values can be similarly splitted,
$\begin{align}
& 4+2\left( 1+2 \right)\log 2+\dfrac{2\left( 1+{{2}^{2}} \right){{\left( \log 2 \right)}^{2}}}{2!}+........ \\
& =2+2+2\log 2+4\log 2+\dfrac{2{{(\log 2)}^{2}}}{2!}+\dfrac{{{2}^{3}}{{\left( \log 2 \right)}^{2}}}{2!}+..... \\
& =\left( 2+2\log 2+\dfrac{2{{\left( \log 2 \right)}^{2}}}{2!}+..... \right)+\left( 2+4\log 2+\dfrac{{{2}^{3}}{{\left( \log 2 \right)}^{2}}}{2!}+.... \right) \\
\end{align}$
Taking 2 common from both brackets
$=2\left( 1+\log 2+\dfrac{{{\left( \log 2 \right)}^{2}}}{2!}+..... \right)+2\left( 1+2\log 2+\dfrac{{{\left( 2\log 2 \right)}^{2}}}{2!}+.... \right)$
This is the fourier expansion of general expansion of $_{e}{{\log }^{2}}$.
$\therefore {{\ }_{e}}{{\log }^{2}}=1+\log 2+\dfrac{{{\left( \log 2 \right)}^{2}}}{2!}+.....$
Similarly $1+2\log 2\dfrac{{{\left( 2\log 2 \right)}^{2}}}{2!}+....$ is the expansion of $_{e}{{\log }^{2\log 2}}$
$\therefore $ It can be written as,
$2\left( {{e}^{\log 2}} \right)+2\left( {{e}^{2\log 2}} \right)$
We know that ${{e}^{\log x}}=x$
$\begin{align}
& \therefore \ {{e}^{\log 2}}=2 \\
& {{e}^{2\log 2}}={{e}^{\log {{2}^{2}}}}={{2}^{2}}=4 \\
& \Rightarrow 2\times 2+2\times 4=4+8=12 \\
\end{align}$
Therefore, the correct answer is option B.
Note: Splitting of the entity is important in the beginning. So as to form the expansion form of ${{e}^{\log x}}$.
Complete step-by-step answer:
Given us $4+2\left( 1+2 \right)\log 2+\dfrac{2\left( 1+{{2}^{2}} \right){{\left( \log 2 \right)}^{2}}}{2!}+\dfrac{2\left( 1+{{2}^{3}} \right){{\left( \log 2 \right)}^{3}}}{3!}$
Take the first number 4 it can split as 2 + 2;
Take 2nd value, $2\left( 1+2 \right)\log 2$ it can be split us as;
$\left( 2+2\times 2 \right)\log 2=2\log 2+4\log 2$
Similarly,
$\dfrac{2\left( 1+{{2}^{2}} \right){{\left( \log 2 \right)}^{2}}}{2!}=\dfrac{\left( 2+{{2}^{3}} \right){{\left( \log 2 \right)}^{2}}}{2!}=\dfrac{2{{\left( \log 2 \right)}^{2}}}{2!}+\dfrac{{{2}^{3}}{{\left( \log 2 \right)}^{2}}}{2!}$
The other values can be similarly splitted,
$\begin{align}
& 4+2\left( 1+2 \right)\log 2+\dfrac{2\left( 1+{{2}^{2}} \right){{\left( \log 2 \right)}^{2}}}{2!}+........ \\
& =2+2+2\log 2+4\log 2+\dfrac{2{{(\log 2)}^{2}}}{2!}+\dfrac{{{2}^{3}}{{\left( \log 2 \right)}^{2}}}{2!}+..... \\
& =\left( 2+2\log 2+\dfrac{2{{\left( \log 2 \right)}^{2}}}{2!}+..... \right)+\left( 2+4\log 2+\dfrac{{{2}^{3}}{{\left( \log 2 \right)}^{2}}}{2!}+.... \right) \\
\end{align}$
Taking 2 common from both brackets
$=2\left( 1+\log 2+\dfrac{{{\left( \log 2 \right)}^{2}}}{2!}+..... \right)+2\left( 1+2\log 2+\dfrac{{{\left( 2\log 2 \right)}^{2}}}{2!}+.... \right)$
This is the fourier expansion of general expansion of $_{e}{{\log }^{2}}$.
$\therefore {{\ }_{e}}{{\log }^{2}}=1+\log 2+\dfrac{{{\left( \log 2 \right)}^{2}}}{2!}+.....$
Similarly $1+2\log 2\dfrac{{{\left( 2\log 2 \right)}^{2}}}{2!}+....$ is the expansion of $_{e}{{\log }^{2\log 2}}$
$\therefore $ It can be written as,
$2\left( {{e}^{\log 2}} \right)+2\left( {{e}^{2\log 2}} \right)$
We know that ${{e}^{\log x}}=x$
$\begin{align}
& \therefore \ {{e}^{\log 2}}=2 \\
& {{e}^{2\log 2}}={{e}^{\log {{2}^{2}}}}={{2}^{2}}=4 \\
& \Rightarrow 2\times 2+2\times 4=4+8=12 \\
\end{align}$
Therefore, the correct answer is option B.
Note: Splitting of the entity is important in the beginning. So as to form the expansion form of ${{e}^{\log x}}$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE