Answer
Verified
454.8k+ views
Hint: The radius of the orbit around the nucleus on which the electron moves as described in Bohr’s model is called Bohr’s radius. This model was devised for a single-electron atom such as hydrogen \[(\text{H}),\text{H}{{\text{e}}^{+}},\text{L}{{\text{i}}^{2+}}\].
Complete step by step answer:
Bohr model was devised from the conclusion drawn from the gold foil experiment by Rutherford, wherein he concluded that the negative electrons are far away from the positive charge in the nucleus.
From the classical mechanical approach, he assumed the electrons to be orbiting around the nucleus with radius,\[r\].
These electrons face centrifugal forces during their circular motion around the nucleus which forces them away from it. It is given by:
\[{{F}_{centrifugal}}=-m{{v}^{2}}/r\]
where m is mass of the electron and v is its velocity.
For a stable atom in which the electron moves in the orbit (having stable energy state) without emitting radiation. Thus, this centrifugal force is opposed by the coulombic attraction which draws the electron inward, experienced between the electron and nucleus called the centripetal force. It is given by:
\[{{F}_{centripetal}}=-Z{{e}^{2}}/{{r}^{2}}\]
Equating the two forces, \[{{F}_{centrifugal}}={{F}_{centripetal}}\]
Rearranging the equation and solving for\[r\], we get
\[\dfrac{-m{{v}^{2}}}{r}=\dfrac{-Z{{e}^{2}}}{{{r}^{2}}}\]
\[r=\dfrac{m{{v}^{2}}{{r}^{2}}}{Z{{e}^{2}}}\]
Multiplying right hand side of the above equation by\[(m/m)\],we get
\[r=\dfrac{m{{v}^{2}}{{r}^{2}}}{Z{{e}^{2}}}\times \dfrac{m}{m}=\dfrac{{{(mvr)}^{2}}}{Z{{e}^{2}}m}\] --- (Equation 1)
Here \[(mvr)\]is the angular momentum of an electron.
For the quantization of the moving electron, Bohr’s second postulate was devised according to which the electron moves in orbit in which its angular momentum is equal to the integral multiple of\[h/2\pi \].
Therefore, angular momentum of the\[{{n}^{th}}\]orbit is \[(mvr)=nh/2\pi \]
where \[h=Planck's\text{ }constant=~6.6\times {{10}^{-34}}Js\]
\[n=\] permitted orbits on which electron revolve called principal quantum number
Now, substituting value of\[(mvr)=nh/2\pi \],in Equation 1:
\[r=\dfrac{{{n}^{2}}{{h}^{2}}}{4{{\pi }^{2}}Z{{e}^{2}}m}\]
For the hydrogen atom \[Z=1,\,n=1\], we get
\[r=\dfrac{{{h}^{2}}}{4{{\pi }^{2}}{{e}^{2}}m}=\dfrac{6.6\times {{10}^{-34}}\times \,\,6.6\times {{10}^{-34}}}{4\times 3.14\times 3.14\times 1.6\times {{10}^{-19}}\times 1.6\times {{10}^{-19}}\times 9.1\times {{10}^{-31}}}\]
\[r=\,\,0.59\times {{10}^{-10}}\text{m}\,\,\text{=}\,0.59\times {{10}^{-8}}\,\text{cm}\]
Therefore, the Bohr’s radius of hydrogen is option (A)- \[0.59\times {{10}^{-8}}\,\text{cm}\].
Note: While calculating the units of the terms must be in the standard form and change of units like from metre to centimetre must be done with utmost care keeping the decimal places in mind.
Complete step by step answer:
Bohr model was devised from the conclusion drawn from the gold foil experiment by Rutherford, wherein he concluded that the negative electrons are far away from the positive charge in the nucleus.
From the classical mechanical approach, he assumed the electrons to be orbiting around the nucleus with radius,\[r\].
These electrons face centrifugal forces during their circular motion around the nucleus which forces them away from it. It is given by:
\[{{F}_{centrifugal}}=-m{{v}^{2}}/r\]
where m is mass of the electron and v is its velocity.
For a stable atom in which the electron moves in the orbit (having stable energy state) without emitting radiation. Thus, this centrifugal force is opposed by the coulombic attraction which draws the electron inward, experienced between the electron and nucleus called the centripetal force. It is given by:
\[{{F}_{centripetal}}=-Z{{e}^{2}}/{{r}^{2}}\]
Equating the two forces, \[{{F}_{centrifugal}}={{F}_{centripetal}}\]
Rearranging the equation and solving for\[r\], we get
\[\dfrac{-m{{v}^{2}}}{r}=\dfrac{-Z{{e}^{2}}}{{{r}^{2}}}\]
\[r=\dfrac{m{{v}^{2}}{{r}^{2}}}{Z{{e}^{2}}}\]
Multiplying right hand side of the above equation by\[(m/m)\],we get
\[r=\dfrac{m{{v}^{2}}{{r}^{2}}}{Z{{e}^{2}}}\times \dfrac{m}{m}=\dfrac{{{(mvr)}^{2}}}{Z{{e}^{2}}m}\] --- (Equation 1)
Here \[(mvr)\]is the angular momentum of an electron.
For the quantization of the moving electron, Bohr’s second postulate was devised according to which the electron moves in orbit in which its angular momentum is equal to the integral multiple of\[h/2\pi \].
Therefore, angular momentum of the\[{{n}^{th}}\]orbit is \[(mvr)=nh/2\pi \]
where \[h=Planck's\text{ }constant=~6.6\times {{10}^{-34}}Js\]
\[n=\] permitted orbits on which electron revolve called principal quantum number
Now, substituting value of\[(mvr)=nh/2\pi \],in Equation 1:
\[r=\dfrac{{{n}^{2}}{{h}^{2}}}{4{{\pi }^{2}}Z{{e}^{2}}m}\]
For the hydrogen atom \[Z=1,\,n=1\], we get
\[r=\dfrac{{{h}^{2}}}{4{{\pi }^{2}}{{e}^{2}}m}=\dfrac{6.6\times {{10}^{-34}}\times \,\,6.6\times {{10}^{-34}}}{4\times 3.14\times 3.14\times 1.6\times {{10}^{-19}}\times 1.6\times {{10}^{-19}}\times 9.1\times {{10}^{-31}}}\]
\[r=\,\,0.59\times {{10}^{-10}}\text{m}\,\,\text{=}\,0.59\times {{10}^{-8}}\,\text{cm}\]
Therefore, the Bohr’s radius of hydrogen is option (A)- \[0.59\times {{10}^{-8}}\,\text{cm}\].
Note: While calculating the units of the terms must be in the standard form and change of units like from metre to centimetre must be done with utmost care keeping the decimal places in mind.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE