
The value of determinant \[\left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
{{e^{ - i\dfrac{\pi }{3}}}}&1&{{e^{i\dfrac{{2\pi }}{3}}}} \\
{{e^{ - i\dfrac{\pi }{4}}}}&{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|\] is ___________
A - $2 + \sqrt 2 $
B - $2 - \sqrt 2 $
C - $ - \left( {2 + \sqrt 2 } \right)$
D - $ - \left( {2 - \sqrt 2 } \right)$
Answer
573.3k+ views
Hint: Firstly expand the determinant as general , on solving the determinant we get ${e^{i\theta }}$ form type things in it for this use ${e^{i\theta }} = \cos \theta + i\sin \theta $ apply it in the equation and also remember that $\cos \left( { - \theta } \right) = \cos \theta $ and $\sin \left( { - \theta } \right) = - \sin \theta $ .
Complete step-by-step answer:
As we have to find the value of determinant \[\left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
{{e^{ - i\dfrac{\pi }{3}}}}&1&{{e^{i\dfrac{{2\pi }}{3}}}} \\
{{e^{ - i\dfrac{\pi }{4}}}}&{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|\] , So for this now we have to expand the given determinant , with respect to column $1$
So ,
$1\left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{{2\pi }}{3}}}} \\
{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|$ $ - $ ${e^{ - i\dfrac{\pi }{3}}}$\[\left| {\begin{array}{*{20}{c}}
{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|\] $ + $ ${e^{ - i\dfrac{\pi }{4}}}$\[\left| {\begin{array}{*{20}{c}}
{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
1&{{e^{i\dfrac{{2\pi }}{3}}}}
\end{array}} \right|\]
So on expanding the determinant ,
$ \Rightarrow 1\left( {1 - {e^{i\dfrac{{2\pi }}{3}}}.{e^{ - i\dfrac{{2\pi }}{3}}}} \right) - {e^{ - i\dfrac{\pi }{3}}}\left( {{e^{i\dfrac{\pi }{3}}} - {e^{i\dfrac{\pi }{4}}}.{e^{i\dfrac{{2\pi }}{3}}}} \right) + {e^{ - i\dfrac{\pi }{4}}}\left( {{e^{i\dfrac{\pi }{3}}}.{e^{i\dfrac{{2\pi }}{3}}} - {e^{i\dfrac{\pi }{4}}}} \right)$
On solving further ,
$ \Rightarrow 0 - {e^{ - i\dfrac{\pi }{3}}}\left( {{e^{i\dfrac{\pi }{3}}} - {e^{i\dfrac{{5\pi }}{{12}}}}} \right) + {e^{ - i\dfrac{\pi }{4}}}\left( {{e^{ - \pi }} - {e^{i\dfrac{\pi }{4}}}} \right)$
\[ \Rightarrow - \left( {1 - {e^{i\dfrac{{5\pi }}{{12}}}}.{e^{ - i\dfrac{\pi }{3}}}} \right) + \left( {{e^{ - \pi }}.{e^{ - i\dfrac{\pi }{4}}} - 1} \right)\]
$\Rightarrow - 2 + {e^{ - i\dfrac{\pi }{3} + i\dfrac{{5\pi }}{{12}}}} + {e^{ - i\dfrac{\pi }{4} - i\pi }}$
On solving the power we get the final solution ,
$ \Rightarrow - 2 + {e^{ - i\dfrac{{3\pi }}{4}}} + {e^{i\dfrac{{3\pi }}{4}}}$
Now we know that from the value of ${e^{i\theta }} = \cos \theta + i\sin \theta $ , apply this on the above equation ,
$ \Rightarrow - 2 + \cos \dfrac{{ - 3\pi }}{4} + i\sin \dfrac{{ - 3\pi }}{4} + \cos \dfrac{{3\pi }}{4} + i\sin \dfrac{{3\pi }}{4}$
We know that from the trigonometry that is $\cos \left( { - \theta } \right) = \cos \theta $ and $\sin \left( { - \theta } \right) = - \sin \theta $
So by using this we get ,
$ \Rightarrow - 2 + 2\cos \dfrac{{3\pi }}{4}$
Hence we know the value of $\cos \dfrac{{3\pi }}{4} = - \dfrac{1}{{\sqrt 2 }}$
$ - 2 - \dfrac{2}{{\sqrt 2 }}$ or we write as $ - 2 - \sqrt 2 $
So the option C is correct .
Note: The value of ${e^{i\theta }} = \cos \theta + i\sin \theta $ is known as the Euler's formula . If we have a complex number$z = r\left( {\cos \theta + i\sin \theta } \right)$ written in polar form, we can use Euler's formula to write it even more concisely in exponential form that is \[r.{e^{i\theta }}\]
Complete step-by-step answer:
As we have to find the value of determinant \[\left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
{{e^{ - i\dfrac{\pi }{3}}}}&1&{{e^{i\dfrac{{2\pi }}{3}}}} \\
{{e^{ - i\dfrac{\pi }{4}}}}&{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|\] , So for this now we have to expand the given determinant , with respect to column $1$
So ,
$1\left| {\begin{array}{*{20}{c}}
1&{{e^{i\dfrac{{2\pi }}{3}}}} \\
{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|$ $ - $ ${e^{ - i\dfrac{\pi }{3}}}$\[\left| {\begin{array}{*{20}{c}}
{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
{{e^{ - i\dfrac{{2\pi }}{3}}}}&1
\end{array}} \right|\] $ + $ ${e^{ - i\dfrac{\pi }{4}}}$\[\left| {\begin{array}{*{20}{c}}
{{e^{i\dfrac{\pi }{3}}}}&{{e^{i\dfrac{\pi }{4}}}} \\
1&{{e^{i\dfrac{{2\pi }}{3}}}}
\end{array}} \right|\]
So on expanding the determinant ,
$ \Rightarrow 1\left( {1 - {e^{i\dfrac{{2\pi }}{3}}}.{e^{ - i\dfrac{{2\pi }}{3}}}} \right) - {e^{ - i\dfrac{\pi }{3}}}\left( {{e^{i\dfrac{\pi }{3}}} - {e^{i\dfrac{\pi }{4}}}.{e^{i\dfrac{{2\pi }}{3}}}} \right) + {e^{ - i\dfrac{\pi }{4}}}\left( {{e^{i\dfrac{\pi }{3}}}.{e^{i\dfrac{{2\pi }}{3}}} - {e^{i\dfrac{\pi }{4}}}} \right)$
On solving further ,
$ \Rightarrow 0 - {e^{ - i\dfrac{\pi }{3}}}\left( {{e^{i\dfrac{\pi }{3}}} - {e^{i\dfrac{{5\pi }}{{12}}}}} \right) + {e^{ - i\dfrac{\pi }{4}}}\left( {{e^{ - \pi }} - {e^{i\dfrac{\pi }{4}}}} \right)$
\[ \Rightarrow - \left( {1 - {e^{i\dfrac{{5\pi }}{{12}}}}.{e^{ - i\dfrac{\pi }{3}}}} \right) + \left( {{e^{ - \pi }}.{e^{ - i\dfrac{\pi }{4}}} - 1} \right)\]
$\Rightarrow - 2 + {e^{ - i\dfrac{\pi }{3} + i\dfrac{{5\pi }}{{12}}}} + {e^{ - i\dfrac{\pi }{4} - i\pi }}$
On solving the power we get the final solution ,
$ \Rightarrow - 2 + {e^{ - i\dfrac{{3\pi }}{4}}} + {e^{i\dfrac{{3\pi }}{4}}}$
Now we know that from the value of ${e^{i\theta }} = \cos \theta + i\sin \theta $ , apply this on the above equation ,
$ \Rightarrow - 2 + \cos \dfrac{{ - 3\pi }}{4} + i\sin \dfrac{{ - 3\pi }}{4} + \cos \dfrac{{3\pi }}{4} + i\sin \dfrac{{3\pi }}{4}$
We know that from the trigonometry that is $\cos \left( { - \theta } \right) = \cos \theta $ and $\sin \left( { - \theta } \right) = - \sin \theta $
So by using this we get ,
$ \Rightarrow - 2 + 2\cos \dfrac{{3\pi }}{4}$
Hence we know the value of $\cos \dfrac{{3\pi }}{4} = - \dfrac{1}{{\sqrt 2 }}$
$ - 2 - \dfrac{2}{{\sqrt 2 }}$ or we write as $ - 2 - \sqrt 2 $
So the option C is correct .
Note: The value of ${e^{i\theta }} = \cos \theta + i\sin \theta $ is known as the Euler's formula . If we have a complex number$z = r\left( {\cos \theta + i\sin \theta } \right)$ written in polar form, we can use Euler's formula to write it even more concisely in exponential form that is \[r.{e^{i\theta }}\]
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

