Answer
Verified
459.3k+ views
Hint: Since it is a question of integration, so we will solve this question by looking at the factor with which integration part will be easy to solve for such type of integration we need to determine the result using the integration represented below, In simple words we will have to look in the integration part
\[\int\limits_a^b {f(x)dx = \int\limits_a^b {f(a + b - x)dx} } \]
Complete step by step answer:
We have to find the value of $\int\limits_{\sqrt {\ln 2} }^{\sqrt {\ln 3} } {\dfrac{{x\sin {x^2}}}{{\sin {x^2} + \sin (\ln 6 - {x^2})}}dx} $
Let \[{x^2} = t\] in the given equation
\[\Rightarrow 2xdx = dt\]
Determining the value of $xdx$, we get
\[\Rightarrow xdx = \dfrac{1}{2}dt\]
Now, After putting the required value, we get
Let $I = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin t}}{{\sin t + \sin (\ln 6 - t)}}dt} ….....(1)$
Now using the formula,
\[\int\limits_a^b {f(x)dx = \int\limits_a^b {f(a + b - x)dx} } \]
On simplifying, we get
$\Rightarrow I = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin [\ln 3 + \ln 2 - t]}}{{\sin (\ln 3 + \ln 2 - t) + \sin [\ln 6 - (\ln 3 + \ln 2 - t)]}}dt} $
Solving further
\[\Rightarrow I = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin [\ln 6 - t]}}{{\sin (\ln 6 - t) + \sin [\ln 6 - \ln 6 + t]}}dt} \]
Hence, we get
\[\Rightarrow I = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin [\ln 6 - t]}}{{\sin (\ln 6 - t) + \sin (t)}}dt} ...(2)\]
Now, adding (1) and (2), we get
$\Rightarrow 2I = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin t}}{{\sin t + \sin (\ln 6 - t)}}dt} + \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin [\ln 6 - t]}}{{\sin (\ln 6 - t) + \sin (t)}}dt} $
So, on simplifying the above equation, we get
\[ = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin [\ln 6 - t] + \sin t}}{{\sin (\ln 6 - t) + \sin (t)}}dt} \]
Numerator and denominator will get cancel and we get
\[\Rightarrow I = \dfrac{1}{4}\int\limits_{\ln 2}^{\ln 3} {1.dt} \]
Integrating the above equation, we get
$ = \dfrac{1}{4}[t]_{\ln 2}^{\ln 3}$
Substituting the limit, we get
$ = \dfrac{1}{4}[\ln 3 - \ln 2]$
Now, we can simplify the above equation, by using the property of logarithm
$\Rightarrow \log a - \log b = \log \dfrac{a}{b}$
Hence, by using the above equation, we get
$\Rightarrow I = \dfrac{1}{4}\ln (\dfrac{3}{2})$
$\therefore$ The value of $\int\limits_{\sqrt {\ln 2} }^{\sqrt {\ln 3} } {\dfrac{{x\sin {x^2}}}{{\sin {x^2} + \sin (\ln 6 - {x^2})}}dx} $ is $ I = \dfrac{1}{4}\ln (\dfrac{3}{2})$. Hence option (A) is correct.
Note:
In this question, carefully solve the equation after using the formula \[\int\limits_a^b {f(x)dx = \int\limits_a^b {f(a + b + x)dx} } \] and when adding both equations, don’t forget to add the left side also which will be 2I. Solve further to get the desired result.
\[\int\limits_a^b {f(x)dx = \int\limits_a^b {f(a + b - x)dx} } \]
Complete step by step answer:
We have to find the value of $\int\limits_{\sqrt {\ln 2} }^{\sqrt {\ln 3} } {\dfrac{{x\sin {x^2}}}{{\sin {x^2} + \sin (\ln 6 - {x^2})}}dx} $
Let \[{x^2} = t\] in the given equation
\[\Rightarrow 2xdx = dt\]
Determining the value of $xdx$, we get
\[\Rightarrow xdx = \dfrac{1}{2}dt\]
Now, After putting the required value, we get
Let $I = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin t}}{{\sin t + \sin (\ln 6 - t)}}dt} ….....(1)$
Now using the formula,
\[\int\limits_a^b {f(x)dx = \int\limits_a^b {f(a + b - x)dx} } \]
On simplifying, we get
$\Rightarrow I = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin [\ln 3 + \ln 2 - t]}}{{\sin (\ln 3 + \ln 2 - t) + \sin [\ln 6 - (\ln 3 + \ln 2 - t)]}}dt} $
Solving further
\[\Rightarrow I = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin [\ln 6 - t]}}{{\sin (\ln 6 - t) + \sin [\ln 6 - \ln 6 + t]}}dt} \]
Hence, we get
\[\Rightarrow I = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin [\ln 6 - t]}}{{\sin (\ln 6 - t) + \sin (t)}}dt} ...(2)\]
Now, adding (1) and (2), we get
$\Rightarrow 2I = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin t}}{{\sin t + \sin (\ln 6 - t)}}dt} + \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin [\ln 6 - t]}}{{\sin (\ln 6 - t) + \sin (t)}}dt} $
So, on simplifying the above equation, we get
\[ = \dfrac{1}{2}\int\limits_{\ln 2}^{\ln 3} {\dfrac{{\sin [\ln 6 - t] + \sin t}}{{\sin (\ln 6 - t) + \sin (t)}}dt} \]
Numerator and denominator will get cancel and we get
\[\Rightarrow I = \dfrac{1}{4}\int\limits_{\ln 2}^{\ln 3} {1.dt} \]
Integrating the above equation, we get
$ = \dfrac{1}{4}[t]_{\ln 2}^{\ln 3}$
Substituting the limit, we get
$ = \dfrac{1}{4}[\ln 3 - \ln 2]$
Now, we can simplify the above equation, by using the property of logarithm
$\Rightarrow \log a - \log b = \log \dfrac{a}{b}$
Hence, by using the above equation, we get
$\Rightarrow I = \dfrac{1}{4}\ln (\dfrac{3}{2})$
$\therefore$ The value of $\int\limits_{\sqrt {\ln 2} }^{\sqrt {\ln 3} } {\dfrac{{x\sin {x^2}}}{{\sin {x^2} + \sin (\ln 6 - {x^2})}}dx} $ is $ I = \dfrac{1}{4}\ln (\dfrac{3}{2})$. Hence option (A) is correct.
Note:
In this question, carefully solve the equation after using the formula \[\int\limits_a^b {f(x)dx = \int\limits_a^b {f(a + b + x)dx} } \] and when adding both equations, don’t forget to add the left side also which will be 2I. Solve further to get the desired result.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE