
The value of \[\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}}\] is
(a)1
(b)\[\dfrac{3}{2}\]
(c)\[\dfrac{5}{6}\]
(d)\[\dfrac{7}{{12}}\]
Answer
493.8k+ views
Hint: Here, we will first use the formulae of sums, \[\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{6}\], \[\sum {{n^3}} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2}\] and \[\sum {{n^6}} = \dfrac{1}{{42}}\left( {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right)\] in the given expression and then taking \[n \to \infty \] on right hand side of the above equation, \[\dfrac{1}{n} \to 0\] to find the required value.
Complete step-by-step answer:
We are given \[\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}}\].
Using the formulae of sums, \[\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{6}\], \[\sum {{n^3}} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2}\] and \[\sum {{n^6}} = \dfrac{1}{{42}}\left( {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right)\] in the above expression, we get
\[
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left[ {\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{6}} \right]{{\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]}^2}}}{{\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{42}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left[ {\dfrac{{2{n^3} + 3{n^2} + n}}{6}} \right]\left[ {\dfrac{{{n^4} + 2{n^3} + {n^2}}}{4}} \right]}}{{\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{42}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{{\left[ {\dfrac{{\left( {2{n^3} + 3{n^2} + n} \right)\left( {{n^4} + 2{n^3} + {n^2}} \right)}}{{24}}} \right]}}{{\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{42}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{42\left[ {2{n^7} + 4{n^6} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}} \right]}}{{24\left[ {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {2{n^7} + 4{n^6} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}} \right]}}{{4\left[ {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right]}} \\
\]
Dividing the numerator and denominator by \[{n^7}\] in right side of the above equation, we get
\[
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {\dfrac{{2{n^7} + 4{n^6} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}}}{{{n^7}}}} \right]}}{{4\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{{n^7}}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {\dfrac{{2{n^7}}}{{{n^7}}} + \dfrac{{4{n^6}}}{{{n^7}}} + \dfrac{{2{n^5}}}{{{n^7}}} + \dfrac{{3{n^6}}}{{{n^7}}} + \dfrac{{6{n^5}}}{{{n^7}}} + \dfrac{{3{n^4}}}{{{n^7}}} + \dfrac{{{n^5}}}{{{n^7}}} + \dfrac{{2{n^4}}}{{{n^7}}} + \dfrac{{{n^3}}}{{{n^7}}}} \right]}}{{4\left[ {\dfrac{{6{n^7}}}{{{n^7}}} + \dfrac{{21{n^6}}}{{{n^7}}} + \dfrac{{21{n^5}}}{{{n^7}}} - \dfrac{{7{n^3}}}{{{n^7}}} + \dfrac{n}{{{n^7}}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {2 + \dfrac{4}{n} + \dfrac{2}{{{n^2}}} + \dfrac{3}{n} + \dfrac{6}{{{n^2}}} + \dfrac{3}{{{n^3}}} + \dfrac{1}{{{n^2}}} + \dfrac{2}{{{n^3}}} + \dfrac{1}{{{n^4}}}} \right]}}{{4\left[ {6 + \dfrac{{21}}{n} + \dfrac{{21}}{{{n^2}}} - \dfrac{7}{{{n^4}}} + \dfrac{1}{{{n^6}}}} \right]}} \\
\]
When taking \[n \to \infty \] on right hand side of the above equation, \[\dfrac{1}{n} \to 0\], we get
\[
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{{7\left[ {2 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0} \right]}}{{4\left[ {6 + 0 + 0 - 0 + 0} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{{7 \cdot 2}}{{4 \cdot 6}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{7}{{12}} \\
\]
Note: Whenever we face such types of questions on summation problems, students must remember the basic summation formulae of the series. Students must not get confused with the values of sums, as the main part of the question will be over then.
Complete step-by-step answer:
We are given \[\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}}\].
Using the formulae of sums, \[\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{6}\], \[\sum {{n^3}} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2}\] and \[\sum {{n^6}} = \dfrac{1}{{42}}\left( {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right)\] in the above expression, we get
\[
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left[ {\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{6}} \right]{{\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]}^2}}}{{\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{42}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left[ {\dfrac{{2{n^3} + 3{n^2} + n}}{6}} \right]\left[ {\dfrac{{{n^4} + 2{n^3} + {n^2}}}{4}} \right]}}{{\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{42}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{{\left[ {\dfrac{{\left( {2{n^3} + 3{n^2} + n} \right)\left( {{n^4} + 2{n^3} + {n^2}} \right)}}{{24}}} \right]}}{{\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{42}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{42\left[ {2{n^7} + 4{n^6} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}} \right]}}{{24\left[ {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {2{n^7} + 4{n^6} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}} \right]}}{{4\left[ {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right]}} \\
\]
Dividing the numerator and denominator by \[{n^7}\] in right side of the above equation, we get
\[
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {\dfrac{{2{n^7} + 4{n^6} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}}}{{{n^7}}}} \right]}}{{4\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{{n^7}}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {\dfrac{{2{n^7}}}{{{n^7}}} + \dfrac{{4{n^6}}}{{{n^7}}} + \dfrac{{2{n^5}}}{{{n^7}}} + \dfrac{{3{n^6}}}{{{n^7}}} + \dfrac{{6{n^5}}}{{{n^7}}} + \dfrac{{3{n^4}}}{{{n^7}}} + \dfrac{{{n^5}}}{{{n^7}}} + \dfrac{{2{n^4}}}{{{n^7}}} + \dfrac{{{n^3}}}{{{n^7}}}} \right]}}{{4\left[ {\dfrac{{6{n^7}}}{{{n^7}}} + \dfrac{{21{n^6}}}{{{n^7}}} + \dfrac{{21{n^5}}}{{{n^7}}} - \dfrac{{7{n^3}}}{{{n^7}}} + \dfrac{n}{{{n^7}}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {2 + \dfrac{4}{n} + \dfrac{2}{{{n^2}}} + \dfrac{3}{n} + \dfrac{6}{{{n^2}}} + \dfrac{3}{{{n^3}}} + \dfrac{1}{{{n^2}}} + \dfrac{2}{{{n^3}}} + \dfrac{1}{{{n^4}}}} \right]}}{{4\left[ {6 + \dfrac{{21}}{n} + \dfrac{{21}}{{{n^2}}} - \dfrac{7}{{{n^4}}} + \dfrac{1}{{{n^6}}}} \right]}} \\
\]
When taking \[n \to \infty \] on right hand side of the above equation, \[\dfrac{1}{n} \to 0\], we get
\[
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{{7\left[ {2 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0} \right]}}{{4\left[ {6 + 0 + 0 - 0 + 0} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{{7 \cdot 2}}{{4 \cdot 6}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{7}{{12}} \\
\]
Note: Whenever we face such types of questions on summation problems, students must remember the basic summation formulae of the series. Students must not get confused with the values of sums, as the main part of the question will be over then.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Why was the Vernacular Press Act passed by British class 11 social science CBSE

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

What steps did the French revolutionaries take to create class 11 social science CBSE

How did silk routes link the world Explain with three class 11 social science CBSE

What are the various challenges faced by political class 11 social science CBSE
