Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

The value of limn(n2)(n3)(n6) is
(a)1
(b)32
(c)56
(d)712

Answer
VerifiedVerified
505.2k+ views
like imagedislike image
Hint: Here, we will first use the formulae of sums, n2=n(n+1)(n+2)6, n3=[n(n+1)2]2 and n6=142(6n7+21n6+21n57n3+n) in the given expression and then taking n on right hand side of the above equation, 1n0 to find the required value.

Complete step-by-step answer:
We are given limn(n2)(n3)(n6).

Using the formulae of sums, n2=n(n+1)(n+2)6, n3=[n(n+1)2]2 and n6=142(6n7+21n6+21n57n3+n) in the above expression, we get


limn(n2)(n3)(n6)=limn[n(n+1)(n+2)6][n(n+1)2]2[6n7+21n6+21n57n3+n42]limn(n2)(n3)(n6)=limn[2n3+3n2+n6][n4+2n3+n24][6n7+21n6+21n57n3+n42]limn(n2)(n3)(n6)=[(2n3+3n2+n)(n4+2n3+n2)24][6n7+21n6+21n57n3+n42]limn(n2)(n3)(n6)=limn42[2n7+4n6+3n6+6n5+3n4+n5+2n4+n3]24[6n7+21n6+21n57n3+n]limn(n2)(n3)(n6)=limn7[2n7+4n6+3n6+6n5+3n4+n5+2n4+n3]4[6n7+21n6+21n57n3+n]


Dividing the numerator and denominator by n7 in right side of the above equation, we get


limn(n2)(n3)(n6)=limn7[2n7+4n6+3n6+6n5+3n4+n5+2n4+n3n7]4[6n7+21n6+21n57n3+nn7]limn(n2)(n3)(n6)=limn7[2n7n7+4n6n7+2n5n7+3n6n7+6n5n7+3n4n7+n5n7+2n4n7+n3n7]4[6n7n7+21n6n7+21n5n77n3n7+nn7]limn(n2)(n3)(n6)=limn7[2+4n+2n2+3n+6n2+3n3+1n2+2n3+1n4]4[6+21n+21n27n4+1n6]

When taking n on right hand side of the above equation, 1n0, we get

limn(n2)(n3)(n6)=7[2+0+0+0+0+0+0+0+0]4[6+0+00+0]limn(n2)(n3)(n6)=7246limn(n2)(n3)(n6)=712


Note: Whenever we face such types of questions on summation problems, students must remember the basic summation formulae of the series. Students must not get confused with the values of sums, as the main part of the question will be over then.