
The value of \[\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}}\] is
(a)1
(b)\[\dfrac{3}{2}\]
(c)\[\dfrac{5}{6}\]
(d)\[\dfrac{7}{{12}}\]
Answer
594.9k+ views
Hint: Here, we will first use the formulae of sums, \[\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{6}\], \[\sum {{n^3}} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2}\] and \[\sum {{n^6}} = \dfrac{1}{{42}}\left( {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right)\] in the given expression and then taking \[n \to \infty \] on right hand side of the above equation, \[\dfrac{1}{n} \to 0\] to find the required value.
Complete step-by-step answer:
We are given \[\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}}\].
Using the formulae of sums, \[\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{6}\], \[\sum {{n^3}} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2}\] and \[\sum {{n^6}} = \dfrac{1}{{42}}\left( {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right)\] in the above expression, we get
\[
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left[ {\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{6}} \right]{{\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]}^2}}}{{\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{42}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left[ {\dfrac{{2{n^3} + 3{n^2} + n}}{6}} \right]\left[ {\dfrac{{{n^4} + 2{n^3} + {n^2}}}{4}} \right]}}{{\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{42}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{{\left[ {\dfrac{{\left( {2{n^3} + 3{n^2} + n} \right)\left( {{n^4} + 2{n^3} + {n^2}} \right)}}{{24}}} \right]}}{{\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{42}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{42\left[ {2{n^7} + 4{n^6} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}} \right]}}{{24\left[ {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {2{n^7} + 4{n^6} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}} \right]}}{{4\left[ {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right]}} \\
\]
Dividing the numerator and denominator by \[{n^7}\] in right side of the above equation, we get
\[
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {\dfrac{{2{n^7} + 4{n^6} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}}}{{{n^7}}}} \right]}}{{4\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{{n^7}}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {\dfrac{{2{n^7}}}{{{n^7}}} + \dfrac{{4{n^6}}}{{{n^7}}} + \dfrac{{2{n^5}}}{{{n^7}}} + \dfrac{{3{n^6}}}{{{n^7}}} + \dfrac{{6{n^5}}}{{{n^7}}} + \dfrac{{3{n^4}}}{{{n^7}}} + \dfrac{{{n^5}}}{{{n^7}}} + \dfrac{{2{n^4}}}{{{n^7}}} + \dfrac{{{n^3}}}{{{n^7}}}} \right]}}{{4\left[ {\dfrac{{6{n^7}}}{{{n^7}}} + \dfrac{{21{n^6}}}{{{n^7}}} + \dfrac{{21{n^5}}}{{{n^7}}} - \dfrac{{7{n^3}}}{{{n^7}}} + \dfrac{n}{{{n^7}}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {2 + \dfrac{4}{n} + \dfrac{2}{{{n^2}}} + \dfrac{3}{n} + \dfrac{6}{{{n^2}}} + \dfrac{3}{{{n^3}}} + \dfrac{1}{{{n^2}}} + \dfrac{2}{{{n^3}}} + \dfrac{1}{{{n^4}}}} \right]}}{{4\left[ {6 + \dfrac{{21}}{n} + \dfrac{{21}}{{{n^2}}} - \dfrac{7}{{{n^4}}} + \dfrac{1}{{{n^6}}}} \right]}} \\
\]
When taking \[n \to \infty \] on right hand side of the above equation, \[\dfrac{1}{n} \to 0\], we get
\[
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{{7\left[ {2 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0} \right]}}{{4\left[ {6 + 0 + 0 - 0 + 0} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{{7 \cdot 2}}{{4 \cdot 6}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{7}{{12}} \\
\]
Note: Whenever we face such types of questions on summation problems, students must remember the basic summation formulae of the series. Students must not get confused with the values of sums, as the main part of the question will be over then.
Complete step-by-step answer:
We are given \[\mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}}\].
Using the formulae of sums, \[\sum {{n^2}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{6}\], \[\sum {{n^3}} = {\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]^2}\] and \[\sum {{n^6}} = \dfrac{1}{{42}}\left( {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right)\] in the above expression, we get
\[
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left[ {\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{6}} \right]{{\left[ {\dfrac{{n\left( {n + 1} \right)}}{2}} \right]}^2}}}{{\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{42}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left[ {\dfrac{{2{n^3} + 3{n^2} + n}}{6}} \right]\left[ {\dfrac{{{n^4} + 2{n^3} + {n^2}}}{4}} \right]}}{{\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{42}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{{\left[ {\dfrac{{\left( {2{n^3} + 3{n^2} + n} \right)\left( {{n^4} + 2{n^3} + {n^2}} \right)}}{{24}}} \right]}}{{\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{42}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{42\left[ {2{n^7} + 4{n^6} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}} \right]}}{{24\left[ {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {2{n^7} + 4{n^6} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}} \right]}}{{4\left[ {6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n} \right]}} \\
\]
Dividing the numerator and denominator by \[{n^7}\] in right side of the above equation, we get
\[
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {\dfrac{{2{n^7} + 4{n^6} + 3{n^6} + 6{n^5} + 3{n^4} + {n^5} + 2{n^4} + {n^3}}}{{{n^7}}}} \right]}}{{4\left[ {\dfrac{{6{n^7} + 21{n^6} + 21{n^5} - 7{n^3} + n}}{{{n^7}}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {\dfrac{{2{n^7}}}{{{n^7}}} + \dfrac{{4{n^6}}}{{{n^7}}} + \dfrac{{2{n^5}}}{{{n^7}}} + \dfrac{{3{n^6}}}{{{n^7}}} + \dfrac{{6{n^5}}}{{{n^7}}} + \dfrac{{3{n^4}}}{{{n^7}}} + \dfrac{{{n^5}}}{{{n^7}}} + \dfrac{{2{n^4}}}{{{n^7}}} + \dfrac{{{n^3}}}{{{n^7}}}} \right]}}{{4\left[ {\dfrac{{6{n^7}}}{{{n^7}}} + \dfrac{{21{n^6}}}{{{n^7}}} + \dfrac{{21{n^5}}}{{{n^7}}} - \dfrac{{7{n^3}}}{{{n^7}}} + \dfrac{n}{{{n^7}}}} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{7\left[ {2 + \dfrac{4}{n} + \dfrac{2}{{{n^2}}} + \dfrac{3}{n} + \dfrac{6}{{{n^2}}} + \dfrac{3}{{{n^3}}} + \dfrac{1}{{{n^2}}} + \dfrac{2}{{{n^3}}} + \dfrac{1}{{{n^4}}}} \right]}}{{4\left[ {6 + \dfrac{{21}}{n} + \dfrac{{21}}{{{n^2}}} - \dfrac{7}{{{n^4}}} + \dfrac{1}{{{n^6}}}} \right]}} \\
\]
When taking \[n \to \infty \] on right hand side of the above equation, \[\dfrac{1}{n} \to 0\], we get
\[
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{{7\left[ {2 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0} \right]}}{{4\left[ {6 + 0 + 0 - 0 + 0} \right]}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{{7 \cdot 2}}{{4 \cdot 6}} \\
\Rightarrow \mathop {\lim }\limits_{n \to \infty } \dfrac{{\left( {\sum {{n^2}} } \right)\left( {\sum {{n^3}} } \right)}}{{\left( {\sum {{n^6}} } \right)}} = \dfrac{7}{{12}} \\
\]
Note: Whenever we face such types of questions on summation problems, students must remember the basic summation formulae of the series. Students must not get confused with the values of sums, as the main part of the question will be over then.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

