The value of \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 - \cos x} }}{x}\] is equal to
A.\[ - \dfrac{1}{{\sqrt 2 }}\]
B.\[\dfrac{1}{{\sqrt 2 }}\]
C.\[0\]
D.Does not exist
Answer
Verified
401.7k+ views
Hint: Here in this question, we have to determine the given limit of a function. To find this first we have to write the given function using a trigonometric double or half angle formula \[\cos 2x = 1 - 2{\sin ^2}x\] then limit of a function \[f\] Which is satisfies the condition left hand limit is equal to right hand limit (i.e., \[LHL = RHL\]) by applying a limit in to the function using the properties of limits, otherwise limits doesn’t exist
Complete step by step solution:
The limit of a function exists if and only if the left-hand limit is equal to the right-hand limit.
A left-hand limit means the limit of a function as it approaches from the left-hand side.
\[\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = {l_1}\]
A right-hand limit means the limit of a function as it approaches from the right-hand side.
\[\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = {l_2}\]
Consider the given limit function,
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 - \cos x} }}{x}\]------(1)
By using a double of half angle formula: \[\cos 2x = 1 - 2{\sin ^2}x \Rightarrow 1 - \cos x = 2{\sin ^2}\dfrac{x}{2}\], then
As we know, \[\sqrt {1 - \cos x} = \left\{ {\begin{array}{*{20}{c}}
{ - \sqrt 2 \sin \dfrac{x}{2},\,\,\,\,\,\,\,x < 0} \\
{\,\,\sqrt 2 \sin \dfrac{x}{2},\,\,\,\,\,\,\,x \geqslant 0}
\end{array}} \right.\]
Now, find the left-hand limit to the function (1)
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sqrt {1 - \cos x} }}{x}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} - \dfrac{{\sqrt 2 \sin \dfrac{x}{2}}}{x}\]
By applying a properties of limit function, we have
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{x}\]
Multiply and divide by \[\dfrac{1}{2}\], then
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{x} \times \dfrac{{\left( {\dfrac{1}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\left( {\dfrac{1}{2}} \right)\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}\]
Again, by the properties of limit, we have
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \left( {\dfrac{1}{2}} \right)\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}\]
As we know the standard limit \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\], then
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \dfrac{{\sqrt 2 }}{2}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \dfrac{1}{{\sqrt 2 }}\]---------(2)
Now, find the right-hand limit to the function (1)
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt {1 - \cos x} }}{x}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt 2 \sin \dfrac{x}{2}}}{x}\]
By applying a properties of limit function, we have
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \sqrt 2 \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sin \dfrac{x}{2}}}{x}\]
Multiply and divide by \[\dfrac{1}{2}\], then
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sin \dfrac{x}{2}}}{x} \times \dfrac{{\left( {\dfrac{1}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\left( {\dfrac{1}{2}} \right)\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}\]
Again, by the properties of limit, we have
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \sqrt 2 \left( {\dfrac{1}{2}} \right)\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}\]
As we know the standard limit \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\], then
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \dfrac{{\sqrt 2 }}{2}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \dfrac{1}{{\sqrt 2 }}\]---------(3)
Since, by (2) and (3)
\[\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sqrt {1 - \cos x} }}{x} \ne \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt {1 - \cos x} }}{x}\]
\[LHL \ne RHL\]
Hence, limit does not exist
Therefore, option (D) is correct
So, the correct answer is “Option D”.
Note: Remember, the limit of any function exists between any two consecutive integers. And the product and quotient properties of limits are defined as:
The function \[f\left( x \right)\] and \[g\left( x \right)\] is are non-zero finite values, given that
\[\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) \cdot g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) \cdot \mathop {\lim }\limits_{x \to a} g\left( x \right)\]
\[\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}\] and
Also \[\mathop {\lim }\limits_{x \to a} k\,f\left( a \right) = k\mathop {\lim }\limits_{x \to a} f\left( a \right)\].
Complete step by step solution:
The limit of a function exists if and only if the left-hand limit is equal to the right-hand limit.
A left-hand limit means the limit of a function as it approaches from the left-hand side.
\[\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = {l_1}\]
A right-hand limit means the limit of a function as it approaches from the right-hand side.
\[\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = {l_2}\]
Consider the given limit function,
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to 0} \dfrac{{\sqrt {1 - \cos x} }}{x}\]------(1)
By using a double of half angle formula: \[\cos 2x = 1 - 2{\sin ^2}x \Rightarrow 1 - \cos x = 2{\sin ^2}\dfrac{x}{2}\], then
As we know, \[\sqrt {1 - \cos x} = \left\{ {\begin{array}{*{20}{c}}
{ - \sqrt 2 \sin \dfrac{x}{2},\,\,\,\,\,\,\,x < 0} \\
{\,\,\sqrt 2 \sin \dfrac{x}{2},\,\,\,\,\,\,\,x \geqslant 0}
\end{array}} \right.\]
Now, find the left-hand limit to the function (1)
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sqrt {1 - \cos x} }}{x}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} - \dfrac{{\sqrt 2 \sin \dfrac{x}{2}}}{x}\]
By applying a properties of limit function, we have
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{x}\]
Multiply and divide by \[\dfrac{1}{2}\], then
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{x} \times \dfrac{{\left( {\dfrac{1}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\left( {\dfrac{1}{2}} \right)\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}\]
Again, by the properties of limit, we have
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \sqrt 2 \left( {\dfrac{1}{2}} \right)\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}\]
As we know the standard limit \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\], then
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \dfrac{{\sqrt 2 }}{2}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = - \dfrac{1}{{\sqrt 2 }}\]---------(2)
Now, find the right-hand limit to the function (1)
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt {1 - \cos x} }}{x}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt 2 \sin \dfrac{x}{2}}}{x}\]
By applying a properties of limit function, we have
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \sqrt 2 \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sin \dfrac{x}{2}}}{x}\]
Multiply and divide by \[\dfrac{1}{2}\], then
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sin \dfrac{x}{2}}}{x} \times \dfrac{{\left( {\dfrac{1}{2}} \right)}}{{\left( {\dfrac{1}{2}} \right)}}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \sqrt 2 \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\left( {\dfrac{1}{2}} \right)\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}\]
Again, by the properties of limit, we have
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \sqrt 2 \left( {\dfrac{1}{2}} \right)\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sin \dfrac{x}{2}}}{{\dfrac{x}{2}}}\]
As we know the standard limit \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\], then
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = - \dfrac{{\sqrt 2 }}{2}\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \dfrac{1}{{\sqrt 2 }}\]---------(3)
Since, by (2) and (3)
\[\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sqrt {1 - \cos x} }}{x} \ne \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{\sqrt {1 - \cos x} }}{x}\]
\[LHL \ne RHL\]
Hence, limit does not exist
Therefore, option (D) is correct
So, the correct answer is “Option D”.
Note: Remember, the limit of any function exists between any two consecutive integers. And the product and quotient properties of limits are defined as:
The function \[f\left( x \right)\] and \[g\left( x \right)\] is are non-zero finite values, given that
\[\mathop {\lim }\limits_{x \to a} \left( {f\left( x \right) \cdot g\left( x \right)} \right) = \mathop {\lim }\limits_{x \to a} f\left( x \right) \cdot \mathop {\lim }\limits_{x \to a} g\left( x \right)\]
\[\mathop {\lim }\limits_{x \to a} \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \dfrac{{\mathop {\lim }\limits_{x \to a} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to a} g\left( x \right)}}\] and
Also \[\mathop {\lim }\limits_{x \to a} k\,f\left( a \right) = k\mathop {\lim }\limits_{x \to a} f\left( a \right)\].
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE