
The value of (secA + tanA) (1−sinA) is equal to:
A) \[{{\tan }^{2}}A\]
B) \[{{\sin }^{2}}A\]
C) \[\cos A\]
D) $\sin A$
Answer
612.3k+ views
Hint: For solving this question, first we convert the whole expression in terms of sinA and cosA by using the trigonometric relations $\sec A\text{ as }\dfrac{1}{\cos A}$ and $\tan A\text{ as }\dfrac{\sin A}{\cos A}$. Now, we solve the numerator by applying another trigonometric relation of ${{\sin }^{2}}A+{{\cos }^{2}}A=1$. After this, we can easily calculate the value of the expression.
Complete step-by-step answer:
According to the problem statement, we are given an expression as $\left( \sec A+\tan A \right)\left( 1-\sin A \right)$. Now, by using the reciprocal identities $\sec \theta =\dfrac{1}{\cos \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ respectively, we get the simplified expression as:
$\Rightarrow \left( \dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A} \right)\left( 1-\sin A \right)$
Since the denominator is same, so solving for the numerator, we get
$\Rightarrow \left( \dfrac{1+\sin A}{\cos A} \right)\left( 1-\sin A \right)$
Using the algebraic identity ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$, we can also write $\left( 1-\sin A \right)\left( 1-\sin A \right)$ as $1-{{\sin }^{2}}A$. So, further simplification yields
$\begin{align}
& \Rightarrow \dfrac{\left( 1-\sin A \right)\left( 1+\sin A \right)}{\cos A} \\
& \Rightarrow \dfrac{1-{{\sin }^{2}}A}{\cos A} \\
\end{align}$
As we know that the ${{\sin }^{2}}A+{{\cos }^{2}}A=1$. So, we can rewrite $1-{{\sin }^{2}}A$ as ${{\cos }^{2}}A$. Putting it in above expression, we get
$\begin{align}
& \Rightarrow \dfrac{{{\cos }^{2}}A}{\cos A} \\
& \Rightarrow \cos A \\
\end{align}$
Hence, the value of (secA + tanA) (1 – sinA) is equal to cosA.
Therefore, option (C) is correct.
Note: This problem could be alternatively solved by using the hit and trial method. We can assume some suitable value of A and match the given expression and option by putting A. Consider A as 0, we obtain the expression to be 1. Putting A as 0 in all options, only option C yields the correct answer. So, option (C) is correct and obtained without calculation.
Complete step-by-step answer:
According to the problem statement, we are given an expression as $\left( \sec A+\tan A \right)\left( 1-\sin A \right)$. Now, by using the reciprocal identities $\sec \theta =\dfrac{1}{\cos \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ respectively, we get the simplified expression as:
$\Rightarrow \left( \dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A} \right)\left( 1-\sin A \right)$
Since the denominator is same, so solving for the numerator, we get
$\Rightarrow \left( \dfrac{1+\sin A}{\cos A} \right)\left( 1-\sin A \right)$
Using the algebraic identity ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$, we can also write $\left( 1-\sin A \right)\left( 1-\sin A \right)$ as $1-{{\sin }^{2}}A$. So, further simplification yields
$\begin{align}
& \Rightarrow \dfrac{\left( 1-\sin A \right)\left( 1+\sin A \right)}{\cos A} \\
& \Rightarrow \dfrac{1-{{\sin }^{2}}A}{\cos A} \\
\end{align}$
As we know that the ${{\sin }^{2}}A+{{\cos }^{2}}A=1$. So, we can rewrite $1-{{\sin }^{2}}A$ as ${{\cos }^{2}}A$. Putting it in above expression, we get
$\begin{align}
& \Rightarrow \dfrac{{{\cos }^{2}}A}{\cos A} \\
& \Rightarrow \cos A \\
\end{align}$
Hence, the value of (secA + tanA) (1 – sinA) is equal to cosA.
Therefore, option (C) is correct.
Note: This problem could be alternatively solved by using the hit and trial method. We can assume some suitable value of A and match the given expression and option by putting A. Consider A as 0, we obtain the expression to be 1. Putting A as 0 in all options, only option C yields the correct answer. So, option (C) is correct and obtained without calculation.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

