The value of $ \sinh (3) $ $ - \cosh (3) $ $ = $
A. \[{e^{ - 3}}\]
B. \[ - {e^{ - 3}}\]
C. \[{e^3}\]
D. \[ - {e^3}\]
Answer
Verified
448.8k+ views
Hint: Now, in this question hyperbolic trigonometric functions of $ \cos $ and $ \sin $ are mentioned. The hyperbolic functions are to be written in the exponential functions. Thereafter we will have to simplify the obtained equation to find the trigonometric equation’s value.
Formula used: We will have to use the formula of hyperbolic cos function, $ \cosh x $ $ = \dfrac{{{e^x} + {e^{ - x}}}}{2} $ and hyperbolic sine function, $ \sinh x $ $ = \dfrac{{{e^x} - {e^{ - x}}}}{2} $ .
Complete step-by-step answer:
According to the given information, we have
The first function is $ A = $ $ \sinh (3) $
The formula for $ \sinh x $ in terms of exponential function is,
$ \sinh x $ $ = \dfrac{{{e^x} - {e^{ - x}}}}{2} $
Substituting x=3 in the above given equation we get,
$ \sinh (3) $ \[ = \dfrac{{{e^3} - {e^{ - 3}}}}{2}\] $ ...(1) $
The first function is $ B = $ $ \cosh (3) $
The formula for $ \cosh x $ in terms of exponential function is,
$ \cosh x $ $ = \dfrac{{{e^x} + {e^{ - x}}}}{2} $
Substituting x=3 in the above given equation we get,
$ \cosh (3) $ $ = \dfrac{{{e^3} + {e^{ - 3}}}}{2} $ $ ...(2) $
According to the given data we have to calculate $ \sinh (3) $ $ - \cosh (3) $ , which is equal to,
$ \sinh (3) $ $ - \cosh (3) $ \[ = \dfrac{{{e^3} - {e^{ - 3}}}}{2}\] $ - \dfrac{{{e^3} + {e^{ - 3}}}}{2} $
\[ \Rightarrow \dfrac{{{e^3} - {e^{ - 3}} - ({e^3} - {e^{ - 3}})}}{2}\]
\[ \Rightarrow \dfrac{{ - 2{e^{ - 3}}}}{2}\]\[ = - {e^{ - 3}}\]
So, the correct answer is “Option B”.
Note: In order to solve problems of this type the key is to have a basic understanding of trigonometric equations and values and also learn its implications. Hyperbolic functions are very similar to the trigonometric functions but are expressed in the form of exponential functions and the most common of them are $ \cosh x $ and $ \sinh x $ .
The formula for $ \cosh x $ in terms of exponential function is,
$ \cosh x $ $ = \dfrac{{{e^x} + {e^{ - x}}}}{2} $
The formula for $ \sinh x $ in terms of exponential function is,
$ \sinh x $ $ = \dfrac{{{e^x} - {e^{ - x}}}}{2} $
Formula used: We will have to use the formula of hyperbolic cos function, $ \cosh x $ $ = \dfrac{{{e^x} + {e^{ - x}}}}{2} $ and hyperbolic sine function, $ \sinh x $ $ = \dfrac{{{e^x} - {e^{ - x}}}}{2} $ .
Complete step-by-step answer:
According to the given information, we have
The first function is $ A = $ $ \sinh (3) $
The formula for $ \sinh x $ in terms of exponential function is,
$ \sinh x $ $ = \dfrac{{{e^x} - {e^{ - x}}}}{2} $
Substituting x=3 in the above given equation we get,
$ \sinh (3) $ \[ = \dfrac{{{e^3} - {e^{ - 3}}}}{2}\] $ ...(1) $
The first function is $ B = $ $ \cosh (3) $
The formula for $ \cosh x $ in terms of exponential function is,
$ \cosh x $ $ = \dfrac{{{e^x} + {e^{ - x}}}}{2} $
Substituting x=3 in the above given equation we get,
$ \cosh (3) $ $ = \dfrac{{{e^3} + {e^{ - 3}}}}{2} $ $ ...(2) $
According to the given data we have to calculate $ \sinh (3) $ $ - \cosh (3) $ , which is equal to,
$ \sinh (3) $ $ - \cosh (3) $ \[ = \dfrac{{{e^3} - {e^{ - 3}}}}{2}\] $ - \dfrac{{{e^3} + {e^{ - 3}}}}{2} $
\[ \Rightarrow \dfrac{{{e^3} - {e^{ - 3}} - ({e^3} - {e^{ - 3}})}}{2}\]
\[ \Rightarrow \dfrac{{ - 2{e^{ - 3}}}}{2}\]\[ = - {e^{ - 3}}\]
So, the correct answer is “Option B”.
Note: In order to solve problems of this type the key is to have a basic understanding of trigonometric equations and values and also learn its implications. Hyperbolic functions are very similar to the trigonometric functions but are expressed in the form of exponential functions and the most common of them are $ \cosh x $ and $ \sinh x $ .
The formula for $ \cosh x $ in terms of exponential function is,
$ \cosh x $ $ = \dfrac{{{e^x} + {e^{ - x}}}}{2} $
The formula for $ \sinh x $ in terms of exponential function is,
$ \sinh x $ $ = \dfrac{{{e^x} - {e^{ - x}}}}{2} $
Recently Updated Pages
Difference Between Prokaryotic Cells and Eukaryotic Cells
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
What is spore formation class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
What are the limitations of Rutherfords model of an class 11 chemistry CBSE