
The value of $ \sinh (3) $ $ - \cosh (3) $ $ = $
A. \[{e^{ - 3}}\]
B. \[ - {e^{ - 3}}\]
C. \[{e^3}\]
D. \[ - {e^3}\]
Answer
552.3k+ views
Hint: Now, in this question hyperbolic trigonometric functions of $ \cos $ and $ \sin $ are mentioned. The hyperbolic functions are to be written in the exponential functions. Thereafter we will have to simplify the obtained equation to find the trigonometric equation’s value.
Formula used: We will have to use the formula of hyperbolic cos function, $ \cosh x $ $ = \dfrac{{{e^x} + {e^{ - x}}}}{2} $ and hyperbolic sine function, $ \sinh x $ $ = \dfrac{{{e^x} - {e^{ - x}}}}{2} $ .
Complete step-by-step answer:
According to the given information, we have
The first function is $ A = $ $ \sinh (3) $
The formula for $ \sinh x $ in terms of exponential function is,
$ \sinh x $ $ = \dfrac{{{e^x} - {e^{ - x}}}}{2} $
Substituting x=3 in the above given equation we get,
$ \sinh (3) $ \[ = \dfrac{{{e^3} - {e^{ - 3}}}}{2}\] $ ...(1) $
The first function is $ B = $ $ \cosh (3) $
The formula for $ \cosh x $ in terms of exponential function is,
$ \cosh x $ $ = \dfrac{{{e^x} + {e^{ - x}}}}{2} $
Substituting x=3 in the above given equation we get,
$ \cosh (3) $ $ = \dfrac{{{e^3} + {e^{ - 3}}}}{2} $ $ ...(2) $
According to the given data we have to calculate $ \sinh (3) $ $ - \cosh (3) $ , which is equal to,
$ \sinh (3) $ $ - \cosh (3) $ \[ = \dfrac{{{e^3} - {e^{ - 3}}}}{2}\] $ - \dfrac{{{e^3} + {e^{ - 3}}}}{2} $
\[ \Rightarrow \dfrac{{{e^3} - {e^{ - 3}} - ({e^3} - {e^{ - 3}})}}{2}\]
\[ \Rightarrow \dfrac{{ - 2{e^{ - 3}}}}{2}\]\[ = - {e^{ - 3}}\]
So, the correct answer is “Option B”.
Note: In order to solve problems of this type the key is to have a basic understanding of trigonometric equations and values and also learn its implications. Hyperbolic functions are very similar to the trigonometric functions but are expressed in the form of exponential functions and the most common of them are $ \cosh x $ and $ \sinh x $ .
The formula for $ \cosh x $ in terms of exponential function is,
$ \cosh x $ $ = \dfrac{{{e^x} + {e^{ - x}}}}{2} $
The formula for $ \sinh x $ in terms of exponential function is,
$ \sinh x $ $ = \dfrac{{{e^x} - {e^{ - x}}}}{2} $
Formula used: We will have to use the formula of hyperbolic cos function, $ \cosh x $ $ = \dfrac{{{e^x} + {e^{ - x}}}}{2} $ and hyperbolic sine function, $ \sinh x $ $ = \dfrac{{{e^x} - {e^{ - x}}}}{2} $ .
Complete step-by-step answer:
According to the given information, we have
The first function is $ A = $ $ \sinh (3) $
The formula for $ \sinh x $ in terms of exponential function is,
$ \sinh x $ $ = \dfrac{{{e^x} - {e^{ - x}}}}{2} $
Substituting x=3 in the above given equation we get,
$ \sinh (3) $ \[ = \dfrac{{{e^3} - {e^{ - 3}}}}{2}\] $ ...(1) $
The first function is $ B = $ $ \cosh (3) $
The formula for $ \cosh x $ in terms of exponential function is,
$ \cosh x $ $ = \dfrac{{{e^x} + {e^{ - x}}}}{2} $
Substituting x=3 in the above given equation we get,
$ \cosh (3) $ $ = \dfrac{{{e^3} + {e^{ - 3}}}}{2} $ $ ...(2) $
According to the given data we have to calculate $ \sinh (3) $ $ - \cosh (3) $ , which is equal to,
$ \sinh (3) $ $ - \cosh (3) $ \[ = \dfrac{{{e^3} - {e^{ - 3}}}}{2}\] $ - \dfrac{{{e^3} + {e^{ - 3}}}}{2} $
\[ \Rightarrow \dfrac{{{e^3} - {e^{ - 3}} - ({e^3} - {e^{ - 3}})}}{2}\]
\[ \Rightarrow \dfrac{{ - 2{e^{ - 3}}}}{2}\]\[ = - {e^{ - 3}}\]
So, the correct answer is “Option B”.
Note: In order to solve problems of this type the key is to have a basic understanding of trigonometric equations and values and also learn its implications. Hyperbolic functions are very similar to the trigonometric functions but are expressed in the form of exponential functions and the most common of them are $ \cosh x $ and $ \sinh x $ .
The formula for $ \cosh x $ in terms of exponential function is,
$ \cosh x $ $ = \dfrac{{{e^x} + {e^{ - x}}}}{2} $
The formula for $ \sinh x $ in terms of exponential function is,
$ \sinh x $ $ = \dfrac{{{e^x} - {e^{ - x}}}}{2} $
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

